24 DIGITAL I/O WITH DIGITAL/INTEGRATION FEATURES FOR MINI PCI EXPRESS AND M.2

HARDWARE MANUAL

MODELS

MPCIE-DIO-24X, MPCIE-DIO-24A, M.2-DIO-24X, M.2-DIO-24A

858 550 9559 800 326 1649 sales@accesio.com

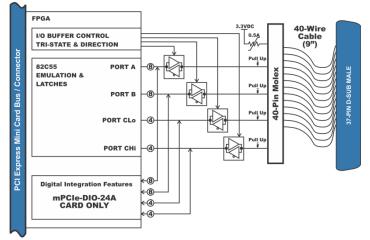
CHAPTER 1: QUICK START

It is recommended that you install the software package before installing the M.2 or PCI Express Mini Card (mPCle) in your computer. You can install the software¹ using either a stand-alone installer downloaded from the website or an optional Software Master CD.

Run the installer you downloaded (or autorun.exe on the Software Master CD) and follow the prompts to install the software for your device.

Please note: during the installation you may be prompted regarding the installation of non-WHQL-certified drivers; please carefully confirm the digitally signed source of the drivers and accept the installation.

Once the software has been installed, shut down your system and carefully install the M.2 or mPCIe card.


Re-start your system. Once the computer finishes booting, your new digital I/O should already be installed and ready for use; you can confirm this by launching Device Manager and looking under the "Data Acquisition" section. If, for any reason, the device displays a warning triangle, right-click and select "Update Driver".

¹ In Linux or OSX please refer to the instructions in those directories.

CHAPTER 2: INTRODUCTION

This manual applies to both the mPCIe-DIO-24X Digital I/O card, and the M.2-DIO-24X as they are register and functionally identical.

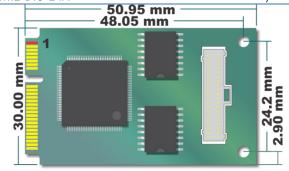
- mPCle: type F1, with latching I/O connector
- M.2 Card: Type 2280-D3-B-M, breakaway to 2260-D3-B-M
- 24 high-current DIO lines (24mA source/sink)
- Change-of-State (CoS) detection IRQ generation
- 2x 8-bit and 2x 4-bit ports, independently selectable for inputs or outputs
- All signals brought out to an optional panel-mountable 37-pin male D-sub connector
- RoHS ships as standard

The advanced logic circuit supports a wide variety of features in addition to simple digital control or monitoring, and additional features can be created, just for you!

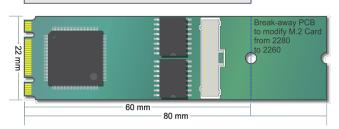
The mPCIe-DIO-24A introduces a wide array of advanced digital features, leveraging the power of the onboard FPGA. Available Digital Integration Features are as follows:

Input Features

- Optional De-bouncing
- Event counters with threshold IRQ
- Edge (rising/falling) and Pulse (high/low) Event counting
- Pulse (high/low) duration, Frequency, and duty-cycle (PWM) measurement, simultaneously


Output Features

• Pulse (high/low), Pulse-train, and PWM generation


The -24A variants are less flexible than the -24X and only support Digital Integration Features on 8 inputs (Port B only) and 8 outputs (Port A only).

CHAPTER 3: HARDWARE

This manual applies to the following models:mPCle-DIO-24X24 Digital I/O w/Digital Integration FeaturesmPCle-DIO-24AAdvanced features available on only 8 bits I/OM.2-DIO-24X24 Digital I/O w/Digital Integration FeaturesM.2-DIO-24AAdvanced features available on only 8 bits I/O

This model is a full-length "F1" mPCle device (30 × 50.95 mm).

The M.2 model is B & M keyed 2280 with breakaway for use as 2260 All units are RoHS compliant.

INCLUDED IN YOUR PACKAGE

mPCIe-DIO or M.2-DIO card

Availa	Available accessories include:				
CAB-mPCle-DB37M	DB37 cable accessory				
ADAP37, STA-37	37-pin Screw Terminal Accessories				
mPCle-HDW-KIT2	Mounting hardware for 2mm				
mPCIe-HDW-KIT2.5	Mounting hardware for 2.5mm				

Contact the factory for information regarding additional accessories, options, and specials that may be available to best fit your specific application requirements, such as Industrial Temp (-40°C to 85°C).

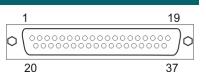
CHAPTER 4: CONFIGURATION SETTINGS

All configuration of this device is performed through software; there are no jumpers or switches to set.

CHAPTER 5: PC INTERFACE

This product interfaces with a PC using a PCI Express Mini Card (mPCIe) (or M.2) connection; a small-form-factor, high-performance, rugged peripheral interconnect technology first introduced for use in laptops and other portable computers.

mPCIe's small size and powerful performance, combined with perfect software compatibility with PCI and PCIe peripheral designs, have led to its recent adoption as a go-to standard for embedded Data Acquisition and Control, and many other applications.


Although mPCle is a broadly-adopted industry standard, the actual connection to the computer shares a specification with mSATA: both mSATA and mPCle use the same edge-connector. In fact, well-designed PCs can automatically detect and configure their onboard connectors to work with either mPCle or mSATA devices – and, according to the standards for mPCle and mSATA they are *supposed* to do so! However, some PC manufacturers ship computers that *only* support mSATA devices. Please confirm in your PC documentation that your edge-connector is *actually* PCI Express Mini Card compliant before installing this, or any, mPCle card. Damage might occur if you install an mPCle device into a computer that only supports mSATA.

mPCle defines mounting holes for securing the otherwise loose end of the card, so it is impossible for these cards to wiggle or flap themselves loose (which was a recurring problem with the older PCI Mini devices). Eliminating this concern for PCI Express Mini Cards is a major reason this standard has seen rapid adoption by the Data Acquisition and Control industry. Unfortunately, a variety of mounting standoff lengths exist; ACCES offers stand-off kits in both 2mm and 2.5mm sizes. Some computers may provide stand-offs. Please consult your computer manufacturer if it requires a different size.

The mPCIe standard, like its PCI Mini Card predecessor, was designed assuming use primarily in Laptop or Notebook and similar devices, where physical dimension is often the paramount design constraint. In Data Acquisition and Control applications low-weight and vibration tolerance tend to be of more concern.

CHAPTER 6: I/O INTERFACE

Most customers will use the optional CAB-mPCle-DB37M's D-Sub Miniature 37-pin Male connector.

	0057		
Assignment	Р	in	Assignment
Ground	1	20	*Fused +3.3VDC
No Connect	2	21	Ground
DIO 23 (Port CHi bit 7)	3	22	DIO 15 (Port B bit 7)
DIO 22 (Port CHi bit 6)	4	23	DIO 14 (Port B bit 6)
DIO 21 (Port CHi bit 5)	5	24	DIO 13 (Port B bit 5)
DIO 20 (Port CHi bit 4)	6	25	DIO 12 (Port B bit 4)
DIO 19 (Port CLo bit 3)	7	26	DIO 11 (Port B bit 3)
DIO 18 (Port CLo bit 2)	8	27	DIO 10 (Port B bit 2)
DIO 17 (Port CLo bit 1)	9	28	DIO 9 (Port B bit 1)
DIO 16 (Port CLo bit 0)	10	29	DIO 8 (Port B bit 0)
No Connect	11	30	DIO 7 (Port A bit 7)
No Connect	12	31	DIO 6 (Port A bit 6)
No Connect	13	32	DIO 5 (Port A bit 5)
No Connect	14	33	DIO 4 (Port A bit 4)
No Connect	15	34	DIO 3 (Port A bit 3)
*Fused +3.3VDC	16	35	DIO 2 (Port A bit 2)
*Fused +3.3VDC	17	36	DIO 1 (Port A bit 1)
Ground	18	37	DIO 0 (Port A bit 0)
Ground	19		
Notes: Pin 20 is connected	tto 1	68.1	7

CAB-mPCle-DB37M Male 37-Pin Pinout

Notes: Pin 20 is connected to 16 & 17.

*Fused +3.3VDC signals are outputs from the mPCle bus with standard card version. If TTL Factory Option is ordered, these become User VCCIO inputs which can be 4.5VDC to 5VDC.

For customers needing deeper integration the on-card connector is a 40-pin latching Molex 501190-4017 connector. The mating connector is the Molex 501189-4010.

40-Pin latching w	vire-	to-bo	pard connector
Assignment	Р	in	Assignment
Fused +3.3VDC	40	39	DIO Port C bit 3
Fused +3.3VDC	38	37	DIO Port C bit 2
Fused +3.3VDC	36	35	DIO Port C bit 1
Fused +3.3VDC	34	33	DIO Port C bit 0
Ground	32	31	DIO Port B bit 7
Ground	30	29	DIO Port B bit 6
Ground	28	27	DIO Port B bit 5
Ground	26	25	DIO Port B bit 4
Factory Use Only	24	23	DIO Port B bit 3
Factory Use Only	22	21	DIO Port B bit 2
Factory Use Only	20	19	DIO Port B bit 1
Factory Use Only	18	17	DIO Port B bit 0
Factory Use Only	16	15	DIO Port A bit 7
Factory Use Only	14	13	DIO Port A bit 6
Factory Use Only	12	11	DIO Port A bit 5
Factory Use Only	10	9	DIO Port A bit 4
DIO Port C bit 7	8	7	DIO Port A bit 3
DIO Port C bit 6	6	5	DIO Port A bit 2
DIO Port C bit 5	4	3	DIO Port A bit 1
DIO Port C bit 4	2	1	DIO Port A bit 0

Alternately, custom hardware cables and/or interfaces can be produced to fit your specific application requirement.

CHAPTER	7: SOFTWARE		FACE									
					Register	s (at BAF	R [1])					
Offset (hex)	Register Name	Descripti	on									
+0	Port A Data	8-bit data	a regist	er. Bit 0 d	ontrols	or repor	s data or	digital I/	/O bit ("[010") 0 (pin 37	7). Bit 7	is DIO 7 (pin 30)
+1	Port B Data		-							t 7 is DIO 15 (
+2	Port C Data		-							it 7 is DIO 23	(pin 3).	Port C can be
		configure	ed as tw	/o 4-bit g	roups, e	ach with	its own l,	O direct	ion.			
		D7		D6	D5	5	D4	D3		D2	D1	DO
		1		0	0		А	CH	i	0	В	CLo
		А, В, СНі,	CLo dire	ction bits: 1	for input,	0 for outp	ut.					•
+3	DIO Control	Set bits A Examples		o, or CHi t	o config	gure the	correspor	nding por	rt for inp	ut. Clear the k	oit for o	utput mode.
		D7	D6	D5	D4	D3	D2	D1	DO	Binary	Hex	Description
		1	0	0	0	0	0	0	0	1000 0000	80	All outputs
		1	0	0	1	1	0	1	1	1001 1011	9B	All inputs
+28	Global IRQ Enable	Write 0xf enabled i			-	s 0x00 to	disable.	This does	s not imp	act which inc	dividual	RQ types are
		D7		D6	D	5	D4	D3		D2	D1	DO
+20	MISC	AUTO)	х	x		х	x		X	х	DEB
+2C MISC		Set AUTC bits. Clea							1 ms-sca	ale debounce	filtering	on all filtered
+2E	PWM Divider	8-bit divi	der of t	he Pulse,	PWM b	ase clock	to achiev	/e longer	⁻ pulses /	slower PWM		
+30	IRQen / IRQstat		Read to	detect v	vhich Dl	O bits ha				ing DIO Event ough 23 corre		r. Clear to to DIO 0 throug
+40	EVENTS		nis regis	ster (read	ling this	register						since the last DIO 0 through
+50	GO / DONE	multiple	GO bits ng an o	to start	multiple	outputs	simultane	eously. F	Reading v	vill return 1 if	the cor	ng DIO bit. Set responding bit i s 24 through 31
+98	FPGA Revision											
+A0	Flash ADDR+Dir											
	Flash Data	These are	e advan	iced regis	ters tha	t should	be avoide	ed. Misu	se can br	rick your unit.	Contac	t us for details.
+A8	Flash Erase									,		
+AC	FPGA Revision											
		D7		D6	D!	5	D4	D3		D2	D1	D0
+FC	RESET	0		0	0		0			RESET	COUNT	
		perform				e input (ounter. S	et COUN	ii to rese	et all Event Co	unters.	SEL KESET LO

There are 240 additional registers associated in groups of 10 with each of the DIO bits. DIO 0's set of 10 registers is located at offset 0x100, DIO 1 at 0x200, etc. i.e. offset = 0x100 * (bit + 1).

ffset (<u>hex)</u>	Register Name	Per-DIO Regist Description		1] + DIO# * 1			lown)		
		D7	D6	D5	D4	D3	D2	D1	D0
100	DED OLINIOE	0	0	0	0	0	0	0	DEBOUNC
+100	DEBOUNCE			•			hrough 15 do via the DEB bit		-
		D7	D6	D5	D4	D3	D2	D1	DO
		EIRQ		EIRQen		HIGHp	LOWp	RISING	FALLING
+104	EVENTSen	detected on t Set LOWp for IRQs. Read E	his DIO inpu low-going p IRQ to deter	t. Set HIGHp Julse Event de mine if DIO b	to generate etection. Set it x has an Ev	an Event whe EIRQen to en vent Counter I	or low-to-high en an input ser able the Event RQ pending. V ITS register at	nses a high-g t Counter to Vrite 1 to EIR	oing pulse. generate
+108	EVENTcounter / PULSEcount	on this DIO in	put.	-			ow many enat ure how many		
+10C	EVENTlimit	8-bit control generate an I			it to set how	many Events	on this DIO inj	put are need	ed to
		D7	D6	D5	D4	D3	D2	D1	DO
+110	PULSE	-	JLSEcount to	o configure ho	ow many pul	ses to genera [.]	PulseHigh et PulseHigh to te. Set PWM to	-	
+120	PULSElow / ActivePULSEcounts	pulse. Duratio OUTPUT BITS	on = PULSElc : 16-bit cour	ow * 8ns. hter. Write Ac	tivePULSEco	unts to config	ne most-recen gure how long sired Duration	the active-go	
+124	PULSEhigh / InactivePULSEcounts	pulse. Duratio OUTPUT BITS	on = PULSEhi : 16-bit cour	igh * 8ns.	activePULSE		he most-recer figure the dela		
		mactiver uise							
+130	PWMlow	16-bit counte	uty cycle = P	WMhigh ÷ (P	WMhigh + P	WMlow) *100	form by readir)%. PWMlow (-	
+130 +134		16-bit counte PWMhigh. D that the counte 16-bit counte	uty cycle = P ter will not r r. Determin uty cycle = P	WMhigh ÷ (P measure puls e the duty cy WMhigh ÷ (P	WMhigh + P es that occur cle of an inp WMhigh + P	WMlow) *100 - infrequently. ut PWM wave WMlow) *100	9%. PWMlow form by readin 9%. PWMhigh	differs from I	PULSElow in

All of these registers can be operated from any operating system using any programming language, using either no driver at all (kernel mode, Linux ioperm(3), DOS, etc.) or using one of the ACCES provided drivers (AIOWDM [for Windows], APCI or AIOComedi [for Linux & OSX]), or using any 3rd party APIs such as provided with Real-Time OSes.

In Windows¹, please consult the various samples (C#, Delphi, and more) to explore how to program the device. The Software Reference Manual.pdf provides reference material covering all AIOWDM driver APIs, and tips for simplifying tasks such as Plug-and-Play card detection. Please note that the Software Reference Manual.pdf will include numerous functions that don't apply to this device. A quick reference of the most-applicable functions is provided, below:

MADE IN THE USA

¹ In Linux or OSX please refer to the documentation at github.com/accesio/AIOComedi.

	AIOWDM API Quick Reference, DIO w/CoS IRQs					
	Function Purpose					
RelInPortL()	Read 32-bits of data					
<pre>RelOutPortB()</pre>	Write 8-bits of data					
<pre>GetNumCards()</pre>	Determine how many cards AIOWDM has detected in the system					
COSWaitForIRQ() Block the thread until the device reports a change-of-state has occurred on a pin of an enabled I/O group (c						
	is aborted).					

There are quite a few additional entry points provided by AIOWDM.dll; please consult the Software Reference Manual.pdf, and/or the sample programs, for more information.

Under certain circumstances the following information might prove useful:

PCI Express Mini Card Plug-and-Play Data					
Vendor / Device ID	Card Type				
0x494F / 0x2E50	mPCle-DIO-24A & M.2-DIO-24A				
0x494F / 0x2E51	mPCle-DIO-24X & M.2-DIO-24X				

A NOTE ABOUT PERFORMANCE

The PCI Express bus and is capable of very high bandwidth, but the latency per-transaction is roughly the same as all the other busses – it hasn't improved in decades. This means you can expect to usually see a not-less-than 1MHz transaction rate. Typical rates exceed 3MHz [0.3µs].

Unfortunately, modern Operating Systems have introduced a new source of latency, the kernel / userland division. Application code runs in userland, which must transition to the kernel in order to perform any hardware operation. This transition adds quite a lot of latency, which varies between different OSes, motherboards and revisions thereof, etcetera. A Windows XP system can see an additional 7µs per transaction; a modern computer might see 3µs or less. Any transaction from the kernel itself, however, avoids this additional overhead.

Real-time operating systems will enable the highest transaction rates possible, all the way up to the hardware limits.

The latest information can always be found on the product page on the website. Here are some useful links:

	Links to useful downloads
ACCES web site	https://accesio.com
Product web page	accesio.com/mPCle-DIO-24A, accesio.com/M.2-DIO-24A
This manual	accesio.com/MANUALS/M.2mPCle-DIO-24X.pdf
Install Package	accesio.com/files/packages/mPCle-DIO-24A Install.exe
Linux / OSX	github.com/accesio/apci

CHAPTER 8: SPECIFICATIONS

PC Interfa	ce	
PCI Express Mini Ca	ard	Type F1 "Full Length" V1.2
Digital Inp	ut / Output	Interface
Digital Bits		24
Compatibility		8255 Mode 0
Performance		1 μs per 32-bit transaction max
		~3.5µs in Windows
Digital Inputs	Logic High	2.0V to VCCIO (3.3VDC, 5VDC tolerant)
	Logic Low	OV to 0.8V
Digital Outputs	Logic High	2.0V (min) 24mA source
(Standard	Logic Low	0.55V (max) 24mA sink
Version)	Power Output	+3.3 VDC via 0.5A polyfuse (resetting)
TTL w/user VCCIO	74LVC8T245	Buffer chip
Digital Inputs	Logic High	3.5V to 5V, UVCCIO = 5V
(-TTL Option)	Logic Low	OV to 1.5V, UVCCIO = 5V
TTL w/user VCCIO	1.65V to 5.5V	Supplied by user at DB37M, polyfused
Digital Outputs	Logic High	3.8V (min) 32mA UVCCIO = 4.5V
(-TTL Option)	Logic Low	0.55V (max) 32mA UVCCIO = 4.5V

Feature	-24A variant limitation	Description		
Debounce Feature	Bits 0-7 and 16-23 only	Enabled per-bit Global filter configuration between ms and µs scale filtering		
Pulse Measurement	Bits 0-7 and 16-23 only	Measured using an 8ns, 16-bit clock. Narrowest pulse 8ns, longest 524.28ms		
Frequency Measurement	Bits 0-7 and 16-23 only	Measured using an 8ns, 32-bit clock. Fastest frequency 62.5MHz		
Event Counter	Bits 0-7 and 16-23 only	Count up to 255 enabled events with 8- bit counter threshold IRQ per bit.		
Pulse Generation	Bits 8-15 only	Generate a high or low pulse using 8ns resolution, 16ns to 524.280ms duration		
Pulse Train Generation	Bits 8-15 only	Generate between 2 and 255 pulses with 8ns to 524.280ms between them		

PWM Generation Bits 8-15 only

Specify high and low side pulse durations with 8ns resolution.

Environm	ental	
Temperature	Operating	0°C to 70°C (order "-T" for -40° to 85°C)
	Storage	-65° to 150°C
Humidity		5% to 95%, non-condensing
Power required		+3.3VDC @ 330mA (typical)

CHAPTER 9: CERTIFICATIONS

CE & FCC

These devices are designed to meet all applicable EM interference and emission standards. However, as they are intended for use installed on motherboards, and inside the chassis of industrial PCs, important care in the selection of PC and chassis is important to achieve compliance for the computer as a whole.

UL & TUV

Neither DC voltages above 3.3V, nor AC voltages of any kind, are consumed or produced during normal operation of this device. This product is therefore exempt from any related safety standards. Use it with confidence!

ROHS / LEAD-FREE STATEMENT

All models are produced in compliance with RoHS and various other lead-free initiatives.

WARNING

A SINGLE STATIC DISCHARGE CAN DAMAGE YOUR CARD AND CAUSE PREMATURE FAILURE! PLEASE FOLLOW ALL REASONABLE PRECAUTIONS TO PREVENT A STATIC DISCHARGE SUCH AS GROUNDING YOURSELF BY TOUCHING ANY GROUNDED SURFACE PRIOR TO TOUCHING THE CARD.

ALWAYS CONNECT AND DISCONNECT YOUR FIELD CABLING WITH THE COMPUTER POWER OFF. ALWAYS TURN COMPUTER POWER OFF BEFORE INSTALLING A CARD. CONNECTING AND DISCONNECTING CABLES, OR INSTALLING CARDS, INTO A SYSTEM WITH THE COMPUTER OR FIELD POWER ON MAY CAUSE DAMAGE TO THE I/O CARD AND WILL VOID ALL WARRANTIES, IMPLIED OR EXPRESSED.

WARRANTY

Prior to shipment, ACCES equipment is thoroughly inspected and tested to applicable specifications. However, should equipment failure occur, ACCES assures its customers that prompt service and support will be available. All equipment originally manufactured by ACCES which is found to be defective will be repaired or replaced subject to the following considerations:

GENERAL

Under this Warranty, liability of ACCES is limited to replacing, repairing or issuing credit (at ACCES discretion) for any products which are proved to be defective during the warranty period. In no case is ACCES liable for consequential or special damage arriving from use or misuse of our product. The customer is responsible for all charges caused by modifications or additions to ACCES equipment

Physical		
Weight		6.2 grams (+ 22.2g for the cable)
Size	Length	50.95mm (2.006")
	Width	30.00mm (1.181")
I/O connector	On-card	Molex 501190-4017 40-pin latching
	mating	Molex 501189-4010
	On cable	Male, D-Sub Miniature, 37-pin
	mating	Female, D-Sub Miniature, 37-pin

not approved in writing by ACCES or, if in ACCES opinion the equipment has been subjected to abnormal use. "Abnormal use" for purposes of this warranty is defined as any use to which the equipment is exposed other than that use specified or intended as evidenced by purchase or sales representation. Other than the above, no other warranty, expressed or implied, shall apply to any and all such equipment furnished or sold by ACCES.

TERMS AND CONDITIONS

If a unit is suspected of failure, contact ACCES' Customer Service department. Be prepared to give the unit model number, serial number, and a description of the failure symptom(s). We may suggest some simple tests to confirm the failure. We will assign a Return Material Authorization (RMA) number which must appear on the outer label of the return package. All units/components should be properly packed for handling and returned with freight prepaid to the ACCES designated Service Center, and will be returned to the customer's/user's site freight prepaid and invoiced.

COVERAGE

FIRST THREE YEARS: Returned unit/part will be repaired and/or replaced at ACCES option with no charge for labor or parts not excluded by warranty. Warranty commences with equipment shipment.

FOLLOWING YEARS: Throughout your equipment's lifetime, ACCES stands ready to provide on-site or in-plant service at reasonable rates similar to those of other manufacturers in the industry.

EQUIPMENT NOT MANUFACTURED BY ACCES

Equipment provided but not manufactured by ACCES is warranted and will be repaired according to the terms and conditions of the respective equipment manufacturer's warranty.

DISCLAIMER

The information in this document is provided for reference only. ACCES does not assume any liability arising out of the application or use of the information or products described herein. This document may contain or reference information and products protected by copyrights or patents and does not convey any license under the patent rights of ACCES, nor the rights of others.

PCI EXPRESS MINI CARD STANDARD NOTICE AND EXCEPTION

The mPCI-DIO-24A family of devices are fully compliant with PCI Express Mini Card v1.2.