
Version 1.4.6 December 2012
Copyright © PLDA 1996-2012

EZDMA IP for Altera Devices

Reference Manual

EZDMA IP Reference Manual

2

EZDMA IP
Reference Manual

Documentation Change History

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by PLDA SAS. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars
of the product and its use contained in this document are given by PLDA in good faith. This document is provided
“as is” with no warranties whatsoever, including any warranty of merchantability, non infringement, fitness for any
particular purpose, or any warranty otherwise arising out of any proposal, specification, or sample.

This document is intended only to assist the reader in the use of the product. PLDA shall not be liable for any loss
or damage arising from the use of any information in this document, or any error or omission in such information,
or any incorrect use of the product. Nor shall PLDA be liable for infringement of proprietary rights relating to use of
information in this document. No license, express or implied, by estoppel or otherwise, to any intellectual property
rights is granted herein.

Date Version Number Changes

December 2012 1.4.6 • Corrected documentation bugs.

December 2011 1.4.5 • No change.

January 2011 1.4.4 • Updated interrupts information and Master Module signals.

• Added more information about completions.

October 2010 1.4.3 • Renamed ’dman_xxx’ to ’dma0_xxx’ with indication that these
signals also apply to DMA channels 1 -7.

May 2010 1.4.3 • Updated INT_ACK description.

December 2009 1.4.2 • Corrected documentation bugs

September 2009 1.4.1 • Added external DMA channels

May 2009 1.3.1 • Updated EZ Interface signals.

April 2009 1.3.1 • No change.

March 2009 1.3.0 • First release

3

EZDMA IP Reference Manual

Table of Contents

List of Tables .5

List of Figures. .6

Preface .7

About this Document . 7

Additional Reading . 7

Feedback and Contact Information . 8

Chapter 1 EZDMA IP Core Features .9

Chapter 2 EZDMA IP Architecture .10

2.1 Architecture of the Master Module DMA Interface . 10

2.1.1 Request & Completion Control . 10

2.1.2 Master Request Module . 11

2.1.3 Behavior of Master Completion Logic . 12

2.1.4 Completion Resources . 12

2.2 Architecture of the Slave Module . 12

2.3 Configuration Space . 17

Chapter 3 Integrating the EZDMA IP Core into your Design .18

3.1 EZ Interface . 19

3.2 Clocks and Resets . 19

3.3 Master Module Interface . 20

3.3.1 Master Module Signals . 20

3.3.2 Transaction Examples using Master signals . 24

3.4 Setting DMA Channel Registers . 27

3.4.1 Setting DMA Channel Options . 28

3.4.1.1 Local Address Size .28

3.4.1.2 Maximum DMA Transfer Size .28

3.4.1.3 Number of Outstanding Requests .28

3.4.2 Address/Data Interface . 29

3.4.3 DMA Channel Control . 29

3.5 Setting DMA Parameters . 30

3.5.1 Connecting the DMA Module to the Application Layer . 31

3.5.1.1 Connecting RAM Devices to DMA .31

3.5.1.2 Connecting FIFO Devices to DMA .31

3.5.2 DMA Commands . 31

EZDMA IP Reference Manual

4

3.6 Implementing Scatter-Gather DMA . 32

3.6.1 Direct and Scatter-Gather DMA Transfer . 32

3.6.2 Scatter-Gather Controller . 34

3.7 Slave Module Interface . 36

3.7.1 Slave Module Signals . 36

3.7.2 Transaction Examples using Slave Signals . 38

3.8 Handling Interrupts . 40

3.9 Configuration Interface . 42

3.10 Test Mode . 43

3.11 Connecting the EZDMA IP to the Altera Hard IP . 44

Appendix A: PCI Express System Performance. 45

A.1 Latency. 45

A.2 Maximum Effective Bandwidth . 46

A.3 Actual Link Usage . 46

A.4 System Performance Illustrated . 47

Appendix B: Register content of TLPs . 50

B.1 Register Content for a TLP without a Data Payload . 50

B.2 Register Content for a TLP with a Data Payload . 52

Appendix C: PCI Express Fundamentals . 55

C.1 About PCI Express. 55

C.2 PCI Express Lanes and Links . 55

C.3 The PCI Express Fabric . 57

C.4 Types of Transactions . 59

C.5 Routing Rules. 60

C.6 Flow Control . 63

C.7 Error Handling . 66

5

EZDMA IP Reference Manual

List of Tables

Table 1: Features of the EZDMA IP Core . 9
Table 2: EZ Interface Signals . 19
Table 3: Clock and Reset Signals . 19
Table 4: Master Application Layer Interface Signals . 20
Table 5: DMA Channel Register Fields. 27
Table 6: Description of Outstanding Request examples . 28
Table 7: DMA Channel Parameters. 30
Table 8: DMA Commands . 32
Table 9: Receive Buffer Memory Resources . 33
Table 10: Controller Signals . 35
Table 11: Slave Module Signals . 36
Table 12: Interrupt Signals . 40
Table 13: Configuration Signals . 42
Table 14: Test Mode Signals . 43
Table 15: Altera Hard IP interface signals . 44
Table 16: Typical latency values of Read Request transactions . 45
Table 17: Sample Maximum Effective Bandwidth Values . 46
Table 18: Memory Read Request 32-bit addressing descriptor format . 50
Table 19: Memory Read Request-Locked 32-bit addressing descriptor format. 50
Table 20: Memory Read Request 64-bit addressing descriptor format . 50
Table 21: Memory Read Request-Locked 64-bit addressing descriptor format. 51
Table 22: I/O Read Request descriptor format . 51
Table 23: Type 0 Configuration Read Request descriptor format . 51
Table 24: Type 1 Configuration Read Request descriptor format . 51
Table 28: Memory Write Request 32-bit addressing descriptor format . 52
Table 25: Message (without data) descriptor format . 52
Table 26: Completion (without data) descriptor format . 52
Table 27: Completion Locked (without data) descriptor format . 52
Table 29: Memory Write Request 64-bit addressing descriptor format . 53
Table 30: I/O Write Request descriptor format . 53
Table 31: Type 0 Configuration Write Request descriptor format. 53
Table 32: Type 1 Configuration Write Request descriptor format. 53
Table 33: Completion (with data) descriptor format . 54
Table 34: Completion Locked (with data) descriptor format . 54
Table 35: Message (with data) descriptor format . 54
Table 36: Configuration of Switch ports . 58
Table 37: PCI Express transaction types and characteristics . 59
Table 38: Completion transaction characteristics . 60
Table 39: Routing by Address Rules . 61
Table 40: Configuration Write transaction steps . 62
Table 41: Memory Read transaction steps . 63
Table 42: Example of an Endpoint’s advertised credits at and after
Link initialization and the effect on Flow Control . 65

EZDMA IP Reference Manual

6

List of Figures

Figure 1: Architecture of the Master Module . 10
Figure 2: Behavior of Master Request Logic . 11
Figure 3: Behavior of Master Completion Logic . 12
Figure 4: Slave Module Behavior . 13
Figure 5: Waveform illustrating immediate programming of the DMA registers 15
Figure 6: Waveform illustrating delayed programming of the DMA registers . 16
Figure 7: Integration of the Core with the Application Layer. 18
Figure 8: Waveform illustrating a typical transfer of a Read Request . 24
Figure 9: Waveform illustrating 4 Data Phase DMA Write transaction with 2 clock cycles latency. . . 25
Figure 10: Waveform illustrating 4 Data Phase DMA Write transaction with 2 clock cycles latency. . 25
Figure 11: Waveform illustrating Writing to and Reading from the DMA registers 26
Figure 12: DMA registers. 27
Figure 13: Potential Outstanding Requests / Channel configurations . 28
Figure 14: DMA Channel control behavior. 29
Figure 15: DMA Parameters . 30
Figure 16: RAM connection to the DMA interface. 31
Figure 17: FIFO connection to the DMA interface. 31
Figure 18: Direct DMA Transfer . 32
Figure 19: Scatter-Gather DMA Transfer . 33
Figure 20: DMA Sample Implementation . 34
Figure 21: Controller signals. 34
Figure 22: Waveform illustrating a typical Write request . 38
Figure 23: Waveform illustrating a typical Read request . 39
Figure 24: Waveform illustrating an aborted Write request . 39
Figure 25: Waveform illustrating an aborted Read request . 40
Figure 26: Waveform illustrating an interrupt sent by the application . 41
Figure 27: One outstanding request, small packet . 47
Figure 28: Two outstanding requests, small packet. 47
Figure 29: Four outstanding requests, small packet . 48
Figure 30: Two outstanding requests, large packet . 48
Figure 31: High latency system . 49
Figure 32: A PCI Express Lane . 55
Figure 33: PCI Express x4 Link. 56
Figure 34: A Typical PCI Express Fabric . 57
Figure 35: Tracing a Write Transaction through the fabric . 62
Figure 36: Tracing a Read Transaction through the fabric . 63
Figure 37: Flow Control through Virtual Channels (VCs) and Traffic Classes (TCs). 64
Figure 38: Flow Control through a single Link . 64
Figure 39: Receive buffers for a Virtual Channel . 65

7

EZDMA IP Reference Manual

Preface

About this Document

This document has been written for design managers, system engineers, and designers who are evaluating or
using the PLDA EZDMA IPfor Altera Devices.

Additional Reading

This section lists additional resources from PLDA and third-parties.

PLDA periodically updates its documentation. Please contact PLDA Technical Support or check the Web site at
http://www.plda.com for current versions.

PLDA Publications

Please refer to the following documents for further information:

• EZDMA IP for Altera Devices Getting Started: The Getting Started guide provides information to enable
designers to integrate the PLDA EZDMA IP into their design flow as quickly as possible (installing,
customizing, integrating, and simulating the Core).

• Software Tools for PCI/PCI-X and PCI Express IP Cores: The Software Reference Manual describes PLDA’s
Software Development Kit (SDK).

• Bus Functional Model Reference Manual: The BFM Reference Manual provides the complete functional
description of the PLDA testbench.

• Build History: The Build History lists changes made to the packaging of each build.

• Revision History: The Revision History lists changes made to the RTL of the Core.

Other Publications

Please refer to the following documents for information on specification standards:

• PCI Express™ Base Specification Revision 2.0

• PCI Express™ Compiler User Guide Revision 9.1

EZDMA IP Reference Manual

8

Feedback and Contact Information

Feedback about this Document

PLDA welcomes comments and suggestions pertaining to this documentation. Please contact PLDA Technical
Support and provide the following information:

• the title of the document

• the page number to which your comments refer

• a description of your comments

Contact information

Corporate Headquarters

PLDA
Parc club du golf - Bât. 11a
Rue Guillibert
13856 Aix-en-Provence Cedex 3 - France

Tel: USA +1 408 273 4528 - International +33 442 393 600
Fax: +33 442 394 902

Sales

For sales questions, please contact sales@plda.com.

Technical Support

For technical support questions, please contact PLDA Support at http://www.plda.com/plda_login.php using the
Support Center if you have a PLDA online account.

If you don’t have a PLDA account, contact http://www.plda.com/support_enquiry.php.

9

EZDMA IP Reference Manual EZDMA IP Core Features

Chapter 1 EZDMA IP Core Features

PLDA’s EZDMA IP for Altera Devices Core is designed for those with little or no experience with PCI Express or
experienced designers looking for an easy-to-use yet robust PCI Express 2.0 or 1.1 interfacing solution for Altera’s
Stratix IV and V GX/GT and Arria II GX/GZ FPGAs.

The EZDMA IP for Altera Devices wraps around Altera PCI Express Hard IP and adds the renowned PLDA
EZDMA interface, providing multi-channel DMA capability with scatter-gather support.

The following table describes the features of the EZDMA IP Core:

Table 1: Features of the EZDMA IP Core

General • 64-bit data path

• PCI Express Base Specification Revision 2.0 compliant

• Supports up to 32 MSI messages using 64-bit addressing

• Supports maximum payload size of 2 Kbytes

• Supports x1, x4 and x8 at 2.5 Gbps with Avalon ST 64 or 128-bit interface (Gen2).

Customization • Easy customization with the IP Wizard

• Unused features not implemented in silicon

DMA Data transfer • Supports up to 8 built-in DMA channels and up to 8 external DMA ports

• Supports up to 4 GB DMA data transfer

• Supports up to 7 outstanding requests

EZDMA IP Architecture EZDMA IP Reference Manual

10

Chapter 2 EZDMA IP Architecture

2.1 Architecture of the Master Module DMA Interface

The EZDMA IP can implement up to 8 independent DMA channels that may be used simultaneously to manage 8
separate data flows, as illustrated below:

Figure 1: Architecture of the Master Module

Per-channel control and status signals make it possible to program, monitor, and control each DMA channel
independently.

The Address/Data Interface is common to all channels and enables data to be read and written through this
memory-like interface.

2.1.1 Request & Completion Control

The Request & Completion Control is responsible for:

• Sending transfer requests issued by DMA channels to the Transmit interface of the Hard IP, according to
available Completion resources

• Receiving Completions from the Receive interface of the Hard IP and forwarding them to the appropriate
channel

DMA x
Control & Status

Request &
Completion

Control

Address/Data

Interface

Completion 0

Completion...

Completion 7

Tx Buffer

Built-in DMA 0 DMA 0
Control & Status

DMA 7
Control & Status

Built-in DMA...

Built-in DMA 7

External DMA
Port 0

External DMA
Port 7

11

EZDMA IP Reference Manual EZDMA IP Architecture

2.1.2 Master Request Module

The following figure illustrates the behavior of the Master Request Module:

Figure 2: Behavior of Master Request Logic

The DMA Request logic receives and transmits transfer requests to the Transmit Module. When one or more
channel requests are detected, the Master Request Module masks requests for which there are no Completion
resources or not enough credits. It then selects requests according to a round-robin priority scheme.

Data is read from the local interface without any DMA channel interaction.

One or more DMA transfer requests
received:

• Requests are masked if there are no
Completion resources or insufficient
credits

• A specific request is chosen according
to a round-robin priority scheme

Idle

Prepare

Compute
transaction
parameters and
prepare request

Request

Request is transferred
to Transmit Module
and waits for
Acknowledge

transfer initiated

Data

Send Packet
payload

EZDMA IP Architecture EZDMA IP Reference Manual

12

2.1.3 Behavior of Master Completion Logic

The following figure illustrates the behavior of Master Completion logic:

Figure 3: Behavior of Master Completion Logic

Master Completion logic receives Completions from the Receive module. It identifies the appropriate completion
resource, DMA channel, and local address for the Completion and informs the requesting channel.

Data is transmitted to the local interface without any DMA channel interaction. The Master Completion Module
receives Completions from the Receive module and informs the requesting channel.

2.1.4 Completion Resources

Up to 8 Completion resources manage Non-Posted requests and maintain necessary information to complete the
transfer.

A timeout error is signalled if no Completion is received after a given amount of time, and the transfer is aborted.

Each completion resource is assigned a fixed tag, from 00000000 to 00000111. Completion resources are
allocated dynamically and several handlers can serve the same DMA channel simultaneously.

2.2 Architecture of the Slave Module

The Slave Module is responsible for:

• Handling I/O, Memory Read, and Memory Write requests

• Decoding TLPs and providing data about the Slave Module

• Sending Completer Abort Completions when necessary

Waits for Receive
module to send a
Completion

Idle

Identify
Finds correct
Completion resource,
DMA channel, and local
address

Receive
Informs DMA channel
that Completion is
received and
prepares to receive
Completion

Data

Packet Payload
received and
forwarded to
Application Layer

Complete

Informs requester
channel that
transaction is
complete

Completion received

13

EZDMA IP Reference Manual EZDMA IP Architecture

The following figure illustrates the logical flow of the Slave Module.

Figure 4: Slave Module Behavior

The Slave Module receives request transactions from the Altera Hard IP Core and provides the Application Layer
with the start address, targeted BAR (Base Address Register), and size of transfer of a given transaction.

Having received a packet from the Slave Module, the Application Layer determines whether to accept or abort the
transaction with the following consequences:

• Write transaction accepted: Data is immediately processed and insertion of a wait-state is not permitted.
For I/O Write transactions, a successful Completion is automatically sent.

• Read transaction accepted: The request is immediately forwarded to the Application Layer, which is
responsible for storing necessary information and performing the Completion.

• Aborted transaction: Any data is discarded and an Abort Completion is sent automatically, if appropriate.

Note: Application logic is allowed any reasonable amount of time before accepting or aborting an incoming transaction.

There is no rule in the PCI Express specification that indicates a maximum delay for a device to respond
to a read request. However, a completion timeout will usually occur if no completion is received within a
few milliseconds. Moreover, no other request or completion transactions can be processed by the Receive
Module until the incoming transaction is accepted or aborted. This can prevent the Master Module from
receiving Completions, thus delaying DMA transfers, and dramatically reducing system performance.

To avoid this, application logic should always try to accept or abort transactions as quickly as possible,
and never exceed a few hundred clock cycles to respond.

Idle

Receive

Waits for I/O or
Memory Request

Request received

Transaction address
and size sent to

Application Layer

Application Layer
accepts Read request

Completion Abort

Transaction request
aborted and any

received data flushed

Application Layer
aborts request

Send Data

Data sent to
Application Layer.
Insertion of Wait

States is not
permitted.

Application Layer
accepts Write request

Memory Write
transaction

Completion OK

Successful
Completion (SC)
header sent to

Transmit Module
I/O Write

transaction

EZDMA IP Architecture EZDMA IP Reference Manual

14

Completions

• I/O Write and aborted Read transactions: I/O Write transactions and aborted Read requests are
automatically completed by the Slave Module, which sends a completion packet with appropriate status to
the Transmit Module.

• Accepted I/O and Memory Read transactions: The Application Layer is responsible for sending
Completion transactions in response to I/O and Memory Read requests using a DMA channel:

1. The Application Layer accepts a transfer with assertion of SLV_ACCEPT and stores the values of
SL_BYTECOUNT[], SLV_CPLADDR[], and SLV_CPLPARAM[].

2. The Application Layer programs a DMA channel to perform the Completion.

3. The Application Layer finishes DMA transfer as with other types of transfers.

Note: You should implement a separate DMA channel for DMA completions that is not used for other types of transfer.
Sharing DMA between completions and Read/Write transfers can lead to dead locks.

Example 1: Immediate Programming of DMA Registers

In this example, the Application Layer chooses to immediately program the DMA registers and DMA Parameters,
thereby avoiding the need to temporarily store Byte Count, Completion Parameters, and Completion Address
values elsewhere.

15

EZDMA IP Reference Manual EZDMA IP Architecture

Note in particular:

• clock cycle 4: DMA_REGIN[] and DMA_PARAM[] can be programmed on the same clock cycle as assertion
of SLV_ACCEPT.

Figure 5: Waveform illustrating immediate programming of the DMA registers

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

byte count

cpl param

cpl addr

locked request

user-

byte

0s

cpl

cpl

0100

param

addr

count

defined

clk

slv_readreq

slv_accept

slv_bytecount

slv_cplparam

slv_cpladdr

slv_cpllocked

dma_regin[127:96]

dma_regin[95:64]

dma_regin[63:32]

dma_regin[31:0]

dmacontrol3

dmacontrol2

dmacontrol1

dmacontrol0

dma_param[23:16]

dma_param[11:8]

dmacontrol4

EZDMA IP Architecture EZDMA IP Reference Manual

16

Example 2: Delayed programming of DMA Registers

This example is identical to the previous example, except that the Application Layer chooses to delay
programming of the DMA Registers and DMA Parameters by N clock cycles. In this case, the Application Layer is
required to temporarily store Byte Count, Completion Parameters, and Completion Address values elsewhere.

Note in particular:

• clock cycle N+1: DMA_REGIN can be programmed simultaneously or at any time after assertion of
SLV_ACCEPT.

• clock cycle N+4: DMA_PARAM can be programmed simultaneously or at any time after DMA_REGIN has been
programmed.

Figure 6: Waveform illustrating delayed programming of the DMA registers

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

byte count

cpl param

cpl addr

locked request

user-

byte

0s

cpl

cpl

0100

param

addr

count

defined

clk

slv_readreq

slv_accept

slv_bytecount

slv_cplparam

slv_cpladdr

slv_cpllocked

dma_regin[127:96]

dma_regin[95:64]

dma_regin[63:32]

dma_regin[31:0]

dmacontrol3

dmacontrol2

dmacontrol1

dmacontrol0

dma_param[23:16]

dma_param[11:8]

dmacontrol4

N N+1 N+2 N+3 N+4 N+5 N+6 N+7

17

EZDMA IP Reference Manual EZDMA IP Architecture

2.3 Configuration Space

The Configuration Space, located within the Transaction Layer, implements all configuration registers and
associated functions. See Appendix B: Register Content of the Configuration Space or the PCI Express
Specifications for the complete content of these registers:

• Type 0 Configuration Space

• PCI Power Management Capability Structure

• Message Signaled Interrupt (MSI) Capability Structure

• PCI Express Capability Structure

• Virtual Channel Capabilities

The configuration space also generates all messages (such as PME#, INT, and Error), MSI requests, and
Completion packets from Configuration requests that flow in the direction of the Root Complex, which are
generated by a downstream port in the direction of the PCI Express Link. All such transactions are dependent
upon the content of the PCI Express Configuration Space as described in the PCI Express Specifications.

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

18

Chapter 3 Integrating the EZDMA IP Core into your Design

This chapter provides information to help you integrate the Core into your design.

Note: Some of the signals described in the following sections may not appear in your implementation of the
Core, depending on the configuration choices you make with the EZDMA IP Wizard.

The diagram below illustrates how the EZDMA IP Core can be integrated with the Application Layer for a typical
PCI Express design using FIFO mode.

Figure 7: Integration of the Core with the Application Layer

Note: Power Management is not handled by the EZDMA IP; you must connect to the Hard IP Core directly in
order to use power management features. See Section 3.11: Connecting the EZDMA IP to the Altera
Hard IP for more information.

DMA Channel 0

Built-in DMA...

Built-in DMA 7

FIFO

FIFO

FIFO

Clock/reset

Configuration Monitoring

Test interface

Interrupts

Built-in DMA 0R&C
Control

+
Tx Buffer

Slave Module

Master Module

Address Data
Control

E
Z

 In
te

rf
ac

e

A
va

lo
n

 S
T

 In
te

rf
ac

e

Altera PCIe
Hard IP

EZDMA IP Core Application Logic

19

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

3.1 EZ Interface

The following table describes signals used to configure the EZDMA IP Core. You can set values for these signals
using the EZDMA IP Wizard.

3.2 Clocks and Resets

The following table describes the clock and reset signals used by the EZDMA IP Core:

Table 2: EZ Interface Signals

Signal I/O Description

k_ez[63:0] in EZ Interface-specific settings:

• k_ez[5:0]: Completion timeout in ms (3...60)

• k_ez[7:6]: reserved

• k_ez[15:8]: Implemented bit for each DMA channel

• k_ez[25:16]: reserved

• k_ez[28:26]: Number of MSI messages (000 =1, ..., 101= 32)

• k_ez[31:29]: Designed Max payload size (001 = 256 bytes, ..., 101 = 2KB)

• k_ez[37:32]: reserved

• k_ez[40:38]: Designed Max read request size (001 = 256 bytes, ..., 101 =
2KB)

• k_ez[47:41]: reserved

• k_ez[63:48]: Implemented bit for each completion resource

Table 3: Clock and Reset Signals

Signal I/O Description

clk in Clock: This signal is the user clock for all Core logic and is provided by
the Altera Hard IP. See Section 3.11: Connecting the EZDMA IP to the
Altera Hard IP for more information.

rstn in Asynchronous Reset: This signal is the active-low reset asynchronous
signal. This signal resets all Core registers and should be asserted
whenever the device is reset.

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

20

3.3 Master Module Interface

Note: In the following sections, when dma0_xxx signals are described, these also apply to DMA Channels 1 to
7. For example, for the signal DMA0_REGIN[127:0] described in the table below, there exists an
equivalent DMA1_REGIN[127:0], DMA21_REGIN[127:0], etc, for each DMA Channel up to
DMA7_REGIN[127:0].

3.3.1 Master Module Signals

The following table describes signals used to communicate between the Application Layer and the Master module
of the EZDMA IP Core, including status, control, and data signals.

Table 4: Master Application Layer Interface Signals

Signal I/O Description

dma0_regin[127:0]
(also for DMA 1 - 7)

in Built-in DMA Register In: This signal indicates the values to be written to
the Address and Size DMA registers when DMA0_CONTROL[3:0] is
asserted.

dma0_regout[127:0]
(also for DMA 1 - 7)

out Built-in DMA Register Out: This signal reflects the state of the DMA
register. It can be read back in order to check the current channel address,
remaining data count, and other settings.

dma0_param[23:0]
(also for DMA 1 - 7)

in Built-in DMA Parameter: This signal indicates the value to write to the
DMA Parameters register when m_dma0_control[] bit 4 is asserted.

dma0_control[5:0]
(also for DMA 1 - 7)

in Built-in DMA Control: This signal is used to program a DMA channel, as
follows:

• dma0_control[0]: write enable for PCI address LSB register

• dma0_control[1]: write enable for PCI address MSB register

• dma0_control[2]: write enable for size register

• dma0_control[3]: write enable for local address register

• dma0_control[4]: write enable for DMA parameters register

• dma0_control[5]: used to abort a currently running DMA transfer

• If asserted and the channel still has outstanding requests, all requests
are handled before the transfer is aborted, otherwise the transfer is
immediately aborted.

• If asserted, and the current transfer is a Completion, than a
Completion with Completion Abort (CA) status is sent and the channel
stops

21

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

dma0_status[3:0]
(also for DMA 1 - 7)

out Built-in DMA Channel Status: This signal reports details about the
channel state.

• 0000: (idle state): Last transfer ended successfully

• 0001: (idle state): Last transfer was stopped by backend

• 0010: (idle state): Last transfer ended because of CPL timeout

• 0011: (idle state): Last transfer ended because of CPL UR error

• 0100: (idle state): Last transfer ended because of CPL CA error

• 0xxx: (idle state): reserved

• 1000: (busy state): Channel is busy processing: DMA channel computes
next action

• 1001: (busy state): Requesting transfer: DMA channel attempts to send a
request to the PCI Express Link

• 1010: (busy state): Processing request:

• Read DMA: The DMA channel is waiting for Completion(s).

• Write DMA: The DMA channel is waiting for all write data to be
posted.

• 1011: (busy state): Waiting for backend to provide/accept data: DMA is in
FIFO mode and DMA0_FIFOCNT is not large enough to allow data transfer

• 1xxx: (busy state): reserved

dma0_fifocnt[12:0]
(also for DMA 1 - 7)

in Built-in DMA FIFO Count: This signal indicates how many bytes of data
the Application Layer is currently able to provide/accept. This signal is used
in FIFO mode only (and can be tied to 0s in RAM mode). If a FIFO device is
connected to a DMA channel, then this signal should indicate in real-time
how many bytes of data can be read/written to the FIFO. Designs that can
always provide/receive data must tie this signal to 4096.

In order to meet PCI Express protocol requirements, the DMA channel
breaks transfers into smaller PCIe read/write requests when necessary;
each time a DMA channel is ready to send a new request, it computes the
request size depending on the programmed maximum read request size/
maximum payload size and the current value indicated by DMA FIFO
Count. If the DMA FIFO count is smaller than the minimum request size
(either the number of bytes to complete a transfer or the number of bytes to
reach the next 128-byte address boundary), then transfer is paused until
the DMA FIFO count value is large enough.

dma_rd out DMA Read: This signal is asserted when the Master module reads data
from the Application Layer, during which time the Application Layer
provides data located at the address specified by DMA_ADDR[] on
DMA_DATA_IN[].

dma_rdaddr[31:0] out DMA Read Address: This signal indicates the local address from which
data should be read. The specified data must be present on
DMA_RDDATA[].

Note: You can specify a value between 13 and 32 bits for the size of this
signal using the Wizard. See the Getting Started for more information.

dma_rdchannel[15:0] out DMA Read Channel: This signal indicates which DMA channel is currently
reading data:

• Bits[7:0]: Built-in DMA channel 7..0.

• Bits[15:8]: External DMA port 7..0.

Table 4: Master Application Layer Interface Signals

Signal I/O Description

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

22

dma_rddata[63:0] in DMA Read Data: This signal is the data bus that provides data for DMA
Write transactions.

Data must be naturally aligned on byte lanes as follows:

• Bits[7:0]: Data for addresses similar to xx000

• Bits[63:56]: Data for addresses similar to xx111

dma_wr out DMA Write: This signal is asserted when the Master Module writes data to
the Application Layer.

Application Layer logic stores current data on DMA_WRDATA[] at the
address specified by DMA_WRADDR[]. Valid bytes are indicated by
DMA_WRBYTEVALID[].

dma_wraddr[31:0] out DMA Write Address: This signals indicates the location at which data
present on DMA_WRDATA[] should be written.

Note: You can specify a value between 13 and 32 bits for the size of this
signal using the Wizard. See the Getting Started for more information.

dma_wrchannel[15:0] out DMA Write Channel: This signal indicates which DMA channel is currently
writing data:

• Bits[7:0]: Built-in DMA channel 7..0.

• Bits[15:8]: External DMA port 7..0.

dma_wrdata[63:0] out DMA Write Data: This signal is the data bus for receiving data for DMA
Read transactions.

Data must be naturally aligned on byte lanes. DMA_WRBYTEVALID[]
indicates which byte lanes are valid.

dma_wrbytevalid[7:0] out DMA Write Byte Valid: This signal indicates which bytes of DMA_WRDATA[]
are valid during transmission:

• dma_wrbytevalid[0] enables data bits 7:0

• dma_wrbytevalid[7] enables data bits 63:56

•

edma_maxmask[9:0] out Current maximum payload size & maximum read request information for
DMA channels:

• Bits [9:5]: maximum read request size mask:

• 11111 = 128 bytes

• 11110 = 256 bytes

• 11100 = 512 bytes

• 11000 = 1KB

• 10000 = 2KB

• 00000 = 4KB

• Bits [4:0]: maximum payload mask

• 11111 = 128 bytes

• 11110 = 256 bytes

• 11100 = 512 bytes

• 11000 = 1KB

• 10000 = 2KB

• 00000 = 4KB

edma0_req
(also for DMA 1 - 7)

in Transfer Request: This signal is asserted to request the Core to perform a
transfer. The signals EDMA_NDESC, EDMA_ARBHINT, and EDMA0_LOCADDR
must be valid and stable as long as this signal is asserted. The
EDMA0_CTRL(0) signal is asserted for one clock cycle to acknowledge the
request; the request must be deasserted on the following clock cycle.

Table 4: Master Application Layer Interface Signals

Signal I/O Description

23

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

edma0_desc[127:0]
(also for DMA 1 - 7)

in Request TLP Header Information:

• Bits [127:96]: TLP header first DWORD.

• Bits [95:94]: DMA read latency on local interface.

• Bits [93]: Set if request length is 4KB, otherwise cleared.

• Bits [92:83]: Reserved, must be 0s.

• Bits [82:80]: Requester function number.

• Bits [79:64]: TLP header second DWORD bits [15:0].

• Bits [63:32]: TLP header fourth DWORD.

• Bits [31:0]: TLP header third DWORD.

edma0_arbhint[12:0]
(also for DMA 1 - 7)

in Information for DMA Arbiter:

• Bits [12:11]: Indicate packet type:

• 00 = non posted

• 10 = posted

• 11 = completion

• Bits [10:0]: reserved

edma0_locaddr[31:0]
(also for DMA 1 - 7)

in Local Address: Indicates the local address at which transfer starts.

edma0_ctrl[6:0]
(also for DMA 1 - 7)

out DMA Control:

• Bit [0]: Request acknowledge: asserted for one clock cycle to indicate that
the transfer request has been taken into account

• Bit [1]: Write request sent: asserted for one clock cycle after a write
request has been acknowledged, in order to indicate that all data has
been read from the local interface.

• Bit [2]: Completion received: indicates that a completion has been
received

• Bit [3]: Completion timeout: indicates that no or only partial completion has
been received after the timeout delay

• Bits [6:4]: Completion status: reports completion status code when bit 2 is
asserted

• 000=successful

• 001=Unsupported request

• 010=completer retry status

• 100=completer abort

Table 4: Master Application Layer Interface Signals

Signal I/O Description

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

24

3.3.2 Transaction Examples using Master signals

Example 3: Typical transfer of a Read request

The waveform below illustrates a typical transfer of a Read request:

Figure 8: Waveform illustrating a typical transfer of a Read Request

Data read from the EZDMA IP Core is written to the local interface using dma_wr... signals.

The Application Layer may not insert wait states and must store data immediately.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AD0 AD1 AD2 AD3

BV0 BV1 BV2 BV3

D0 D1 D2 D3

Selected Channel

clk

dma_rd

dma_wr

dma_wraddr

dma_wrbytevalid

dma_wrdata

dma_wrchannel

25

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

Example 4: DMA Write transaction in RAM mode with 1 clock cycle latency

In this example, the Core transmits a 4 Data Phase DMA Write transaction.

Note in particular:

• clock cycle 3: Data transfer doesn’t begin until clock cycle 4 due to system latency.

Figure 9: Waveform illustrating 4 Data Phase DMA Write transaction with 2 clock cycles latency

In order to prepare PCI Express Write transactions, the DMA Control logic reads data from the local interface
using dma_rd... signals.

In this example, the Application Logic has programmed DMA latency to 00b, which means the address is
presented one clock cycle in advance.

Example 5: DMA Write transaction with 2 clock cycles latency

This example is identical to the one above except that data transfer is delayed for 2 clock cycles instead of 1.

In this example, the Core transmits a 4 Data Phase DMA Write transaction.

Note in particular:

• clock cycle 4: Data transfer doesn’t begin until clock cycle 4 due to system latency.

Figure 10: Waveform illustrating 4 Data Phase DMA Write transaction with 2 clock cycles latency

In order to prepare PCI Express Write logic, the DMA Control reads data from the local interface using dma_rd...
signals.

In this example, the Application Logic has programmed DMA latency to 01b, which means the address is
presented 2 clock cycles in advance.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AD0 AD1 AD2 AD3

D0 D1 D2 D3

Selected Channel

clk

dma_rd

dma_wr

dma_rdaddr

dma_rddata

dma_rdchannel

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AD0 AD1 AD2 AD3

D0 D1 D2 D3

Selected Channel

clk

dma_rd

dma_wr

dma_rdaddr

dma_rddata

dma_rdchannel

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

26

Example 6: Writing to and Reading from the DMA Registers

This example illustrates writing to and reading from the DMA registers.

Note in particular:

• clock cycle 3: DMA_CONTROL0 must be asserted in order for Address 1 to be written to the DMA register.

• clock cycle 5: DMA_REGOUT[31:0] now contains Address 1.

Figure 11: Waveform illustrating Writing to and Reading from the DMA registers

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADDR1

SIZE4

LOC ADDR4

LOC ADDR4

SIZE4

ADDR1

clk

dma_regin[127:96]

dma_regin[95:64]

dma_regin[63:32]

dma_regin[31:0]

dmacontrol3

dmacontrol2

dmacontrol1

dmacontrol0

dma_regout[127:96]

dma_regout[95:64]

dma_regout[63:32]

dma_regout[31:0]

27

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

3.4 Setting DMA Channel Registers

The DMA registers, which are programmed by the Application Layer, are illustrated below:

Figure 12: DMA registers

The following table describes each field of the DMA Channel Register:

Table 5: DMA Channel Register Fields

Name Description

PCI Address[63:0] If the transfer is a completion, then:

the MSB field must be 0, and the LSB field must be programmed with completion
parameters obtained from slv_cpladdr[].

If the transfer is not a completion, then:

the Application Layer programs the PCI start address of a DMA transfer in this
register. The MSB indicates addressing as follows:

• if MSB is 0: 32-bit addressing used

• if MSB is not 0: 64-bit addressing is used (if DMA is a memory transfer)

Note that a transfer must not cross a 4GB addressing boundary.

The address is automatically incremented and indicates the address of the last
requested data + 1. On successful completion of a transfer, this register should
contain the value: pci_start_address + transfer_size.

Transfer Size[95:64] This register is used by the Application Layer to record the total transfer size (in
bytes) for burst transfers. The value of this register must be programmed to 4 bytes
for DW transfers.

The size is automatically decremented and this register indicates the remaining data
size that can be requested. Upon successful completion of a DMA burst transfer, the
value of this register should be 0.

Local
address[127:96]

This register is used by the Application Layer to record the local start address of a
DMA transfer.

The local address is automatically incremented during RAM mode transfers and
indicates the address of the last transferred data + 1. Upon successful completion of
a transfer, the value of this register should be local_start_address + transfer_size.

Note that the local address must be aligned with the PCI address (bits 2:0 should be
identical).

The value of this address is 0 in FIFO mode.

6495

Transfer Size (bytes)

96127

Local Address

3263

PCI address MSBdm
a0

_
re

gi
n

dm
a0

_
re

go
u

t

031

PCI address LSB/Completion parameters

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

28

3.4.1 Setting DMA Channel Options

The EZDMA IP Wizard enables you to set the Local Address size, the maximum DMA transfer size, and the
number of Outstanding Requests, allowing you to choose between increased system performance or reduced
Core logic.

3.4.1.1 Local Address Size

The Local Address Size register can be set with the EZDMA IP Wizard to between 13 and 32 bits.

If, for example, the Application Layer only needs 23 bits to map all peripherals connected to the DMA channels,
this signal can be set to 23. This ties unused bits of the Local Address Size register to 0, thus saving logic.

Note that a design that uses DMA exclusively in FIFO mode should not need to use the Local Address register,
and this setting can be set to its minimum value.

3.4.1.2 Maximum DMA Transfer Size

The Transfer Size register can be set with the EZDMA IP Wizard to between 8KB - 1 (13 bits) and 4GB - 1 (32
bits). For example, if the Application Layer never performs DMA transfers of more than 1MB, this signal can be set
to 2MB - 1 (21 bits). This ties unused bits of the DMA Transfer register to 0, thus saving logic.

3.4.1.3 Number of Outstanding Requests

The number of Outstanding Requests implemented in a design can be set with the EZDMA IP Wizard to between
1 and 16. Outstanding Requests are only necessary for Non Posted (Memory Read and I/O) DMA transfers. The
more Outstanding Requests in a design, the greater the potential performance. However, this will involve
increased logic. (See the FAQ Article entitled “About DMA Mode” for more information.)

The following figure illustrates three example Outstanding Request configurations.

Figure 13: Potential Outstanding Requests / Channel configurations

The following table describes the examples illustrated above:

Table 6: Description of Outstanding Request examples

Example Description

1 You may choose to implement one Outstanding Request if:

• Your system only performs Posted (Memory Write) DMA transactions.

• System performance is not a high priority.

2 In this example, DMA1 performs Write transfers and has no need for any Outstanding
Requests. DMA0 performs Read transfers and can have up to 4 outstanding requests at any
given time.

3 In this example, both DMA0 and DMA1 perform DMA Read and Write transfers. Each DMA
channel can have from 1 to 4 outstanding requests at any given time, depending on the
number of Outstanding Requests already used by the other DMA channel.

OR0 DMA1

DMA0

DMA2

OR0

DMA1

DMA0

OR2

OR1

OR3

OR0

DMA1

DMA0

OR2

OR1

OR3

Example 1 Example 2 Example 3

29

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

3.4.2 Address/Data Interface

Data for DMA transfers is read from or written to the registers through a local interface based on a designer-
defined 32-bit addressing scheme and simple read/write controls.

Write transfers:

• data and the data’s location address are presented simultaneously

• the Application Layer can pipeline Write cycles if necessary

Read transfers: The start address is presented 0 to 3 clock cycles before data. This latency is programmed for
each DMA channel and permits maximum flexibility in order to interface with a wide range of peripherals.

Note that data for transfers programmed in RAM mode can be received in a non-linear order.

3.4.3 DMA Channel Control

DMA channels are controlled by the Channel Controller Module:

• Each channel can have up to 8 outstanding requests. In FIFO mode, however only one request is permitted
at a time (in which case the channel waits for a Completion before making another request).

• A channel must wait for all Completions before stopping if all requests have been issued, the Application
Layer stops DMA, or an error is detected.

The following figure illustrates behavior of the DMA Channel Control:

Figure 14: DMA Channel control behavior

Idle

Run

Param register

Waits until new
action is possible

Wait Completion

Waits for all
outstanding requests

programmed

Data Request

Request transfer

Complete

Signals end of
transfer to the

Application Layer

Data Wait

Waits until previously
requested transfer is
complete (if DMA is

in FIFO mode)

Completion Received
cplabort

Send Completion
with Completer Abort

status

End and completion pending

End and no

All Completions received

Acknowledge

Application stop and

Acknowledge

Request

Completion pending

command is completion

or RAM mode

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

30

3.5 Setting DMA Parameters

The DMA Parameters, which are programmed by the Application Layer, are illustrated below:

Figure 15: DMA Parameters

The following table describes each field of the DMA Parameters:

Table 7: DMA Channel Parameters

Name Description

DMA Mode[0] FIFO Mode (bit set to 0): In this mode, only one PCI Express request is permitted at
a time. DMA_FIFOCNT[] determines whether a transfer is possible. Data is always
received in order and a FIFO can be safely used.

RAM Mode (bit set to 1): In this mode, multiple PCI Express requests are permitted
at a time and the Application layer must be constantly ready to provide/accept all
data. Read DMA data may be received in any order. A FIFO may not be safely used.

See Section 3.5.1: Connecting the DMA Module to the Application Layer for more
information.

Reserved[1] Bit 1 of the DMA register is reserved and must be tied to 0.

Read Latency[3:2] This register indicates the number of clock cycles the Application Layer needs to
provide data to DMA_ADDR[] after a read is requested on the local interface by
DMA_READ.

• 00: data is available on next clock cycle

• 01: data is available 2 clock cycles later

• 10: data is available 3 clock cycles later

• 11: data is available 4 clock cycles later

Note:By default, the maximum supported read latency is 3. A larger read latency
requires larger buffering logic. You can set a lower read latency value (2,1 or 0)
to decrease logic usage if your application does not require a large latency.

Byte Enable[7:4] The Application Layer programs this register with the appropriate byte-enable for
DW transfers. The value of this register is ignored for burst transfers.

Command[11:8] The Application Layer programs this register with a DMA command in order to
specify which PCI Express command should be used for a transfer. See
Section 3.5.1: Connecting the DMA Module to the Application Layer for more
information.

Reserved[18:12] --

TC[21:19] Traffic class for a transfer.

Attributes[23:22] • Bit 23 indicates if relaxed ordering is enabled for a transfer. The default is 0.

• Bit 22 indicates if No-Snoop is enabled for a transfer. The default is 0.

012471118192122

command byte enable

DMA mode

Reserved

Read latency

Attributes

TC reserved
23 12

31

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

3.5.1 Connecting the DMA Module to the Application Layer

3.5.1.1 Connecting RAM Devices to DMA

The following figure shows the connection of a RAM or RAM-like device to DMA:

Figure 16: RAM connection to the DMA interface

When programming a DMA channel, the read latency is adjusted depending on the number of register levels
between the Read Address port and the DMA Data Input port.

3.5.1.2 Connecting FIFO Devices to DMA

The following figure shows the connection of a FIFO device to DMA:

Figure 17: FIFO connection to the DMA interface

Do not use FIFO devices in DMA-RAM Mode as data can arrive in a non-linear order.

You must adjust read latency when programming DMA channels to take into account the number of register levels
between the Read Enable port and the DMA Data Read port.

Note: In FIFO mode, performance can be significantly lower than that of RAM mode, and may provide less than
20% of RAM mode throughput.

3.5.2 DMA Commands

• DW commands have the following characteristics:

• Restricted to a single data phase

• The Transfer Size register is ignored after a transfer

• Byte-enable bits specified in the Byte Enable register are used

• Burst commands have the following characteristics:

• Can be any size from 1 byte to 232 - 1 bytes

• The Address register is automatically incremented after a transfer

• The appropriate byte-enable bits are automatically computed by the DMA engine for all other commands

W
ri

te
 P

or
t R

e
ad P

ort

RAM
Device

dma_rdaddr[]

dma_rddata[]

dma_rd

dma_wraddr[]

dma_wrdata[]

dma_wrbytevalid[]

dma_wr

dma_rddata[]

dma_rd

dma_wrdata[]

dma_rdchannel[n]

FIFO

dma_wr

dma_wrchannel[n]

dma_fifocnt[]

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

32

The following table describes DMA Commands:

3.6 Implementing Scatter-Gather DMA

The EZDMA IP default DMA Transfer mode is Direct DMA Transfer. However, you can implement Scatter-Gather
DMA mode using the external Scatter-Gather Controller module. You can use Scatter-Gather DMA Transfer to
perform large data transfers to a buffer that is fragmented in system memory.

3.6.1 Direct and Scatter-Gather DMA Transfer

In Direct DMA Transfer mode, the DMA start address is a pointer to a contiguous data buffer mapped in the PCI
bus address space. Data is read to and written from the buffer in a sequential order:

Figure 18: Direct DMA Transfer

Table 8: DMA Commands

Command Code Type Allowed Transfer Size
Allowed Value for TC &

Attributes

I/O read 0000 DW 4 bytes 0s

I/O write 0001 DW 4 bytes 0s

Memory read DW 0010 DW 4 bytes any

Memory write DW 0011 DW 4 bytes any

Completion with data 0100 Burst same as request same as request

Completion locked 0101 Burst same as request same as request

reserved 0101

Memory read burst 0110 Burst any any

Memory write burst 0111 Burst any any

reserved 1xxx

Buffer

System Memory

DMA Start Address

33

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

In Scatter-Gather DMA Transfer mode, the DMA start address is a pointer to a chained list of page descriptors.
Each descriptor contains the address and size of a data block (page), as well as a pointer to the next descriptor
block to enable circular buffers:

Figure 19: Scatter-Gather DMA Transfer

Note: Scatter-Gather DMA mode is independent of either RAM or FIFO mode.

The following table describes a sample Scatter-Gather implementation using descriptors blocks of 20 bytes:

Table 9: Receive Buffer Memory Resources

Offset Field Description

00h Page address [31:3] Indicates start address of memory page that must be aligned on an 8-
byte boundary (bits 2:0 must be "000"):

• If a page is located in the 32-bit addressing space, then bits [63..32]
must be set to 0.

• If a page is located in the 64-bit addressing space, then a full 64-bit
address must be initialized.

Note that a page must not cross a 4GB address boundary.

04h Page address [63:32]

08h Page Size Indicates the size of the memory page in units of bytes. This value must
be a multiple of 8 bytes .

0Ch Next descriptor
pointer [31:2] & end of

chain bit

Specifies the address of the next page descriptor, which must be aligned
on a 4-byte boundary (bits 1:0 must be 00).

Setting bit 0 to 1 indicates that the current descriptor is the last descriptor
in the chain and the DMA engine will not attempt to fetch other
descriptors.

10h Next descriptor
pointer [63:32]

Page 1

System Memory

DMA Start Address

Page 2

Page address
Page size (bytes)
Next descriptor pointer

Page address
Page size (bytes)
Next descriptor pointer

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

34

3.6.2 Scatter-Gather Controller

The Scatter-Gather Controller module is an add-on to the EZDMA IP Core that is inserted between the Application
Logic and each DMA channel that requires Scatter-Gather capabilities.

The following figure illustrates a sample implementation in which DMA0 and DMA1 have scatter-gather
capabilities and DMA2 functions in direct mode:

Figure 20: DMA Sample Implementation

The following figure shows scatter-gather controller signals:

Figure 21: Controller signals

DMA0 dma_sg

Application Logic

DMA1 dma_sg

DMA2

EZDMA IP Core

dma_sg

Towards ApplicationTowards EZDMA IP Core

app_sg_enable

app_sg_idle

app_dma_wr

app_dma_regin[127:0]

app_dma0_param[15:0]

app_dma_control[5:0]

dma_status[3:0]

dma_wrdata[63:0]

dma_wrchannel

dma_wr

dma_regin[127:0]

dma0_param[15:0]

dma_control[5:0]

clk rstn

dma_regout[127:0]

app_dma_fifocnt[12:0]
dma_fifocnt[12:0]

35

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

The table below describes scatter-gather controller signals:

Table 10: Controller Signals

Signal Description

clk 125 or 250 MHz clock (same as PCIe Core).

rstn Active-low reset (same as PCIe Core).

app_sg_enable This signal must be asserted when a DMA transfer is
programmed in order to use scatter-gather mode,
otherwise direct mode is used.

app_dma_wr Write enable for application logic: this signal
indicates that data present on dma_wrdata must be
stored.

app_dma_regin[127:0] This signal indicates the address and size of transfer to
be programmed (same as dma_regin input of PCIe
Core).

app_dma0_param[23:0]
(also for DMA 1 - 7)

This signal indicates parameters to be programmed
(same as dma_param input of PCIe Core).

app_dma_control[5:0] This signal is used to program and abort DMA transfer
(same as dma_control input of PCIe Core).

dma_status [3:0] DMA status from DMA channel.

dma_wrdata[63:0] DMA write data from PCIe Core.

dma_wrchannel DMA channel write enable for DMA channel.

dma_wr DMA write enable from PCIe Core

dma_regin[127:0] DMA channel registers input.

dma_regout[127:0] DMA channel registers output.

dma0_param[23:0]
(also for DMA 1 - 7)

DMA channel parameters.

dma_control[5:0] DMA channel control.

app_dma_fifocnt[12:0] This signal indicates the DMA FIFO count from
application logic.

dma_fifocnt[12:0] DMA FIFO count.

app_sg_idle This signal indicates when the scatter-gather controller
is idle.

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

36

3.7 Slave Module Interface

3.7.1 Slave Module Signals

The following table describes the signals used to communicate between the Application Layer and the Slave
module of the EZDMA IP Core:

Table 11: Slave Module Signals

Signal I/O Description

slv_dataout[63:0] out Slave Data Out: This signal is the data bus for output in slave mode. It reads
data received from the PCI Express bus during Slave Write transactions.

slv_bytevalid[7:0] out Slave Byte Valid: This signal indicates which bytes of SLV_DATAOUT[] are
valid during each data phase of a write transaction, when SLV_WRITE is
asserted.

• slv_bytevalid[0]: enables data bits [7:0]

• slv_bytevalid[7]: enables data bits [63:56]

During a read transaction, this signal indicates the value of the last/first
DWORD byte enable field of the TLP header:

• slv_bytevalid[3:0]: first DWORD byte enable

• slv_bytevalid[7:4]: last DWORD byte enable

slv_bytecount[12:0] out Slave Byte Count: This signal indicates the size of a transaction from first
enabled byte to last enabled byte. Possible values are from 1 to 4096 bytes.

slv_dwcount[10:0] out Slave DW Count: This signal indicates the transaction’s DW count. Possible
values are from 1 to 1024 DW.

slv_addr[63:0] out Slave Address: This signal acts as a memory address counter. Address bits
can be directly connected to internal or external static memory devices. The
Address is initialized with the PCI start address of a transaction and then
automatically incremented whenever a DW is written.

slv_bar[6:0] out Slave BAR: This signal indicates which space is targeted during a slave
access:

• slv_bar[5:0]: set when BAR0... BAR5 are targeted

• slv_bar[6]: set when expansion ROM BAR is targeted

slv_readreq out Slave Read Request: This signal indicates when a read request is received.
Application logic must store the address, target BAR and size (as
necessary), as well as SLV_CPLADDR[31:0], and SLV_CPLPARAM[4:0] in
order to complete the transaction.

slv_cpladdr[31:0] out Slave Completion Address: This signal indicates the DMA address
required to perform a completion:

• slv_cpladdr[6:0]: Low address

• slv_cpladdr[7]: reserved

• slv_cpladdr[15:8]: Requester tag

• slv_cpladdr[31:16]: Requester ID

slv_cplparam[7:0] out Slave Completion Parameter: This signal contains the DMA parameters
required to perform a completion:

• slv_cplparam[7:6]: Request attributes

• slv_cplparam[5:3]: Request traffic class

• slv_cplparam[2:0]: reserved

slv_cpllocked out Slave Locked Completion: This signal indicates if a request is locked and
requires a locked completion. This signal is only available if locked
transaction support is enabled.

37

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

slv_writereq out Slave Write Request: This signal indicates when a write request is received.

slv_write out Slave Write: This signal indicates that data present on SLV_DATAOUT must
be written at the address specified by SLV_ADDR.

slv_lastwrite out Slave Last Write: This signal is asserted for 1 clock cycle when the last DW
of a Memory or I/O Write transfer is received.

slv_io out Slave IO: This signal indicates whether a request is IO. It can be used to
distinguish IO and memory requests.

slv_accept in Slave Accept: The Application asserts this signal when SLV_READREQ or
SLV_WRITEREQ are asserted in order to accept the corresponding
transaction. If the transaction is an I/O Write, then a completion with
Successful Completion (SC) status is issued.

For Slave read requests, SLV_ACCEPT needs to be asserted before
completion timeout is reached on the Host system. For Slave write requests,
the application can assert SLV_ACCEPT at any time, however, all TLPs
received will be blocked until SLV_ACCEPT is asserted.

slv_abort in Slave Abort: The Application asserts this signal when SLV_WRITEREQ or
SLV_READREQ are asserted in order to abort the corresponding transaction. If
the transaction is not posted, then a Completion with Completion Abort (CA)
status is issued.

slv_ur in Slave Unsupported: The Application asserts this signal while
SLV_WRITEREQ or SLV_READREQ are asserted in order to treat the
corresponding transaction as an unsupported request. If the transaction is
not posted, then a Completion with Unsupported Request (UR) status is
issued.

Table 11: Slave Module Signals

Signal I/O Description

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

38

3.7.2 Transaction Examples using Slave Signals

Example 7: Typical Transfer of a Write Request

In this example, the Core transmits a Write request. If the request is an I/O Write transaction, the Core
automatically sends a Completion with Successful Completion (SC) status.

Note in particular:

• clock cycle 5: Data transmission begins 2 clock cycles after assertion of SLV_ACCEPT.

Figure 22: Waveform illustrating a typical Write request

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte Count

Selected BAR

Address Counter

DW Count

D0 D1 D2 D3

BV0 BV1 BV2 BV3

clk

slv_writereq

slv_accept

slv_bytecount

slv_bar

slv_addr

slv_dwcount

slv_dataout

slv_bytevalid

slv_write

slv_lastwrite

39

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

Example 8: Typical Transfer of a Read Request

In this example, the Core transmits a Read request. The Application Layer is responsible for sending a
Completion.

Figure 23: Waveform illustrating a typical Read request

Example 9: Aborting a Write request

Application logic might need to abort a transaction if a permanent error occurs.

In this example, the Core transmits a Write request, which is then aborted. The Core automatically sends a
Completion with Completion Abort (CA) status.

Note in particular:

clock cycle 5: SLV_WRITEREQ is deasserted 1 clock cycle after the assertion of SLV_ABORT.

Figure 24: Waveform illustrating an aborted Write request

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte Count

Selected BAR

Address Counter

DW Count

Comp Address

DMA Parameters

clk

slv_readreq

slv_accept

slv_bytecount

slv_bar

slv_addr

slv_dwcount

slv_cpladdr

slv_cplparam

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
clk

slv_writereq

slv_accept

slv_abort

slv_write

slv_lastwrite

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

40

Example 10: Aborting a Read request

In this example, the Core transmits a Read request of 4 DW, which is then aborted. The Core automatically sends
a Completion with Completion Abort (CA) status.

Note in particular:

• clock cycle 5: SLV_READREQ is deasserted 1 clock cycle after the assertion of SLV_ABORT.

Figure 25: Waveform illustrating an aborted Read request

3.8 Handling Interrupts

The following table describes interrupt signals:

Table 12: Interrupt Signals

Signal I/O Description

int_request in Interrupt Request: This signal is asserted by the Application Layer to
request an interrupt, and deasserted when the interrupt has been serviced by
software.

If MSI is enabled (bit 0 of CFG_MSICSR is set), MSI is used to signal interrupts,
otherwise interrupt pin A signaling is used.

int_ack out Interrupt Acknowledge: This signals is asserted by the Core following a
rising edge of INT_REQUEST to indicate that information has been sent to the
PCIe link, and is deasserted when INT_REQUEST is deasserted. Note that the
value of INT_REQUEST must not change before the previous change is
acknowledged.

int_msgnum[4:0] in Interrupt MSG Number: This signal indicates the MSI message number and
must be valid when INT_REQUEST is asserted. The CFG_MSICSR[6:4]
signal (see Section 3.9) indicates how many messages are allocated.

If multiple MSI messages are not used, this signal should be hardwired to 0.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
clk

slv_readreq

slv_accept

slv_abort

slv_lastwrite

41

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

Example 11: Sending Interrupts

The Application asserts INT_REQUEST to generate an interrupt and provides information about the interrupt source
through a dedicated interrupt register. The application layer keeps INT_REQUEST asserted until the software has
acknowledged the interrupt using one of the following methods:

• ISR_RW: Software reads and writes the value read to the interrupt register. INT_REQUEST is de-asserted
when the driver writes to the interrupt register

• ISR_READ: Software reads the interrupt register. INT_REQUEST is de-asserted when the interrupt register is
read.

• ISR_WRITE: Software reads and writes a specific value (set by the Software) to the interrupt register.
INT_REQUEST is de-asserted when the interrupt register is read.

MSI is used to signal an interrupt if this mechanism has been enabled by the host system:

• An MSI message with message number specified by INT_MSGNUM is sent when INT_REQUEST is asserted
and INT_ACK confirms that it has been sent to the PCIe Link. Note that host system might allocate less
message numbers than requested: application must check CFG_MSICSR to know which messages are
available.

• No information is sent to the PCIe Link when interrupt request is deasserted.

If MSI is not enabled, then interrupt A pin is used instead:

• Int A assert message is sent to PCIe Link when Int request is asserted and INT_ACK confirms that it has
been sent.

• Int A deassert message is sent when Int request is deasserted and INT_ACK confirms that it has been sent.

Figure 26: Waveform illustrating an interrupt sent by the application

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
clk

int_request

int_ack

int_msgnum

N N+1 N+2 P P+1 P+2 X X+1 X+2 X+3

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

42

3.9 Configuration Interface

The following table describes configuration signals:

Table 13: Configuration Signals

Signal I/O Description

cfg_msicsr[15:0] out Configuration MSI Control Status Register: This output provides essential
fields of this register; it is not an accurate image of RSI N(A) counts, how-
ever:

• cfg_msicsr[15:7]: reserved

• cfg_msicsr[6:4]: Multiple Message Enable: This field indicates permitted
values for MSI signals. For example, if “100” is written to this field 16, 8, 4,
2, or 1 MSI signals are allocated.

• 000: 1 MSI allocated

• 001: 2 MSI allocated

• 010: 4 MSI allocated

• 011: 8MSI allocated

• 100: 16 MSI allocated

• 101: 32MSI allocated

• 110: reserved

• 111: reserved

• cfg_msicsr[3:1]: Multiple Message Capable: This is the value set using the
Wizard.

• 000: 1 MSI requested

• 001: 2 MSI requested

• 010: 4 MSI requested

• 011: 8 MSI requested

• 100: 16 MSI requested

• 101: 32 MSI requested

• 110: reserved

• 111: reserved

cfg_msicsr[0]: MSI enable: 0 = this component cannot use MSI.

cfg_msixcsr[31:0] out MSI-X Capability Control Status Register: See PCI Express Specifications
for details.

cfg_prmcsr[31:0] out Configuration Primary Control Status Register: See PCI Express
Specifications for details

cfg_devcsr[31:0] out Configuration Dev Control Status Register: See PCI Express
Specifications for details.

cfg_dev2csr[31:0] out Configuration Dev 2 Control Status Register: See PCI Express
Specifications for details.

cfg_linkcsr[31:0] out Configuration Link Control Status Register: See PCI Express
Specifications for details.

cfg_link2csr[31:0] out Configuration Link 2 Control Status Register: See PCI Express
Specifications for details.

43

EZDMA IP Reference Manual Integrating the EZDMA IP Core into your Design

3.10 Test Mode

The following table describes the test mode signal used for simulation and debugging:

cfg_ltssm[4:0] out LTSSM state: LTSSM state encoding:

• 00000: detect.quiet

• 00001: detect.active

• 00010: polling.active

• 00011: polling.compliance

• 00100: polling.configuration

• 00110: config.linkwidthstart

• 00111: config.linkaccept

• 01000: config.lanenumaccept

• 01001: config.lanenumwait

• 01010: config.complete

• 01011: config.idle

• 01100: recovery.rcvlock

• 01101: recovery.rcvconfig

• 01110: recovery.idle

• 01111: L0

• 10000: disable

• 10001: loopback.entry

• 10010: loopback.active

• 10011: loopback.exit

• 10100: hot.reset

• 10101: L0s

• 10110: L1.entry

• 10111: L1.idle

• 11000: L2.idle

• 11001: L2.transmit.wake

• 11010: recovery.speed

Table 14: Test Mode Signals

Signal I/O Description

test_mode[15:0] in Test Mode: Default values are all 0s.

• test_mode[0]: Set this bit to 1 to decrease PCI Express Link initialisation
time and simplify Core simulation.

• test_mode[1]: Set this bit to 1 to force the Receive Module to treat all
requests as Unsupported Requests.

• test_mode[2]: Set this bit to 1 to force the Master module to consider
timeout expired for all pending Completions.

• test_mode[3]: Set this bit to 1 to disable warning assertions.

• test_mode[15:4]: reserved

Table 13: Configuration Signals

Signal I/O Description

Integrating the EZDMA IP Core into your Design EZDMA IP Reference Manual

44

3.11 Connecting the EZDMA IP to the Altera Hard IP

The following signals are used to connect the EZDMA IP Core to the Altera Hard IP using the Avalon-ST interface.
Refer to the PCI Express Compiler User Guide v9.0 for a complete description of these signals.

Table 15: Altera Hard IP interface signals

Signal I/O Description

clk in Clock: This signal is the user clock for all Core
logic. This clock is provided by the Altera Hard IP.

rstn in Asynchronous Reset: This signal is the active-low
reset asynchronous signal. This signal resets all
Core registers and should be asserted whenever
the device is reset.

tx_st_valid0
tx_st_data0[63:0]
tx_st_sop0
tx_st_eop0
tx_st_err0

out Transmit Interface: These signals must be directly
connected to the Altera Hard IP Avalon ST TX
interface.

tx_st_ready0
tx_cred0[35:0]

in

rx_st_ready0
rx_st_mask0

out Receive Interface: These signals must be directly
connected to the Altera Hard IP Avalon ST RX
interface.

rx_st_valid0
rx_st_data0[63:0]
rx_st_sop0
rx_st_eop0
rx_st_err0
rx_st_err0
rx_st_mask0
rx_st_bardec0[7:0]

in

tl_cfg_add[3:0]
tl_cfg_ctl[31:0]
tl_cfg_wr
tl_cfg_sts[52:0]
tl_cfg_sts_wr

in Configuration Management: These signals must
be directly connected to the Altera Hard IP.

app_int_sts
app_msi_req
app_msi_tc[2:0]
app_msi_num[4:0]
pex_msi_num[4:0]

out Interrupt Control: These signals must be directly
connected to the Altera Hard IP.

app_int_ack
app_msi_ack

in

cpl_err[6:0]
cpl_pending

out Error Reporting: These signals must be directly
connected to the Altera Hard IP.

pme_to_cr out Power Management Control: These signals must
be directly connected to the Altera Hard IP.

pme_to_sr in

test_in[39:0] out Test Mode Interface: These signals must be
directly connected to the Altera Hard IP.

test_out[63:0] in

45

EZDMA IP Reference Manual

Appendix A: PCI Express System Performance

The EZDMA IP Core is highly customizable, so choices you make during configuration impact on how the Core
functions. Factors affecting system performance include:

• Latency

• Maximum effective bandwidth

• Actual link usage

A.1 Latency

Latency is the delay in transferring a packet between two points. Global latency, that is, the total latency within a
system, is the sum of several factors:

• Data payload size of a TLP

• Core latency between the Application Layer and the Link (varies between Receive and Transmit
transactions)

• Switch latency

• Completer latency, such as SDRAM read latency and SRAM mailbox read latency

• PCI Express to PCI/PCI-X bridge latency and latency inherent to a PCI component

You can avoid high global latency by carefully designing your system’s architecture (limiting the number of
Switches, for example) and by modifying the width of critical Links.

The following table shows typical latency values using a x4 lane for various types of Read Request transactions
and for different types of memory (mailbox or SDRAM):

The type of transaction also affects latency:

• Read transactions (high latency potential): Most systems generate more than one completion transaction
per Read Request. More transactions means greater potential latency.

• Write transactions (low latency potential): Write operations are posted and do not require completions.
Fewer transactions means lower potential latency.

• Small transactions (high latency potential): Many small packets will result in greater latency than one
large packet, because data payload transfer time contributes to overall latency.

Table 16: Typical latency values of Read Request transactions

Fabric Environment Data Payload Size and Latency

8B 32B 256B

Link bandwidth usage 64 ns 88 ns 312 ns

Point-to-point, mailbox 240 ns 264 ns 464 ns

Point-to-point, SDRAM 272 ns 296 ns 496 ns

Point-to-point, PCI peripherals 448 ns 472 ns 904 ns

Through switch, mailbox 528 ns 552 ns 776 ns

Through switch, SDRAM 560 ns 584 ns 812 ns

Through switch, PCI peripherals 672 ns 720 ns 1144 ns

EZDMA IP Reference Manual

46

A.2 Maximum Effective Bandwidth

Bandwidth is a measure of the rate at which data is transferred at a specific point of a Link. Maximum Effective
Bandwidth is the rate at which “valuable” data is transferred at a particular point. It doesn’t include transaction
«overhead», such as headers, sequence numbers, CRCs, ECRCs, and other packets like DLLPs and SKIP
advanced sets.

Maximum Effective Bandwidth = data / (data + overhead)

The table below shows Maximum Effective Bandwidth values for Completion transactions sent in response to
consecutive Read or Write requests on a x4 Link. For Read Requests, the Completion transaction size can be split
into packets of 64 DW, 32 DW, or 16 DW. An overhead of 5 DW for each packet is presumed, with an additional 2
DW of DLLP for Read Request transactions:

For example, to calculate the Maximum Effective Bandwidth for a Completion packet of 128 DW, divided into four
packets of 32 DW, generated in response to a Read Request:

• 4 = number of Completion Packets

• 5 = number of DW of overhead per packet

• 2 = number of DW per DLLP for the complete Read Request transaction

• Overhead = (4 X 5) + 2 = 22

• Maximum Effective Bandwidth = 128 / (128 + 22) = 85%

Note: A Maximum Payload Size of 64 DW or 128 DW provides between 92% and 96% of effective bandwidth for
Write transactions and practically the saturation limit for Read transactions. Maximum payloads in this
range can be a good trade-off between latency, congestion, and Core size. Systems that require higher
bandwidth might need higher maximum data payloads for effective bandwidth values of up to 99%.

A.3 Actual Link Usage

Actual Link Usage is a measure of how much a Link is actually used in a given period of time, and is defined by the
following equation:

Actual Link Usage = active time / (active time + idle time)

Table 17: Sample Maximum Effective Bandwidth Values

Completion
transaction size

(bytes / DW)
Completion packet(s) in response to a...

Write
Request

Read Request
64 DW Packet

Read Request
32 DW Packet

Read Request
16 DW Packet

4 / 1 16% 12% 12% 12%

8 / 2 28% 22% 22% 22%

32 / 8 61% 53% 53% 53%

64 / 16 76% 69% 69% 69%

128 / 32 86% 82% 82% 72%

256 / 64 92% 90% 84% 74%

512 / 128 96% 91% 85% 75%

1024 / 256 98% 92% 86% 75%

2048 / 512 99% 92% 86% 75%

4096 / 1024 99% 93% 86% 76%

47

EZDMA IP Reference Manual

A.4 System Performance Illustrated

You can optimize system performance by defining your objectives (is maintaining a small Core size more
important than maximum throughput?) and balancing the following factors:

• Maximum packet size

• Global system latency

• Number of outstanding requests per component

In general, you should consider increasing the number of outstanding requests with small data payloads and in
high-latency systems.

By default, the maximum value of outstanding requests possible per component is 32, but by setting the Extended
tag and the Phantom Function Number Enable bit, you can set outstanding requests up to 2,048. However, once
Link Usage has reached 100%, increasing the number of outstanding requests will not improve system
performance.

The following examples use a Maximum Effective Bandwidth of 82%.

A.4.1 One Outstanding Request, Small Packet

Figure 27: One outstanding request, small packet

In this example, Tx1 represents a Read Request of 32 DW. Rx1 represents the corresponding Completion packet.
One period (the latency of the transaction) is the time it takes for a Request transaction to be sent to a Completer
and have a Completion packet returned. The Actual Link Usage is:

Actual Link Usage = Rx1 / (Rx1 + idle time)

Actual Link Usage = 3 / (3 + 7) = 30%

For a 32 DW Read Request, the Maximum Effective Bandwidth is 82% (see Table 17). If the actual link usage is
30%, calculate 30% of the Maximum Effective Bandwidth to obtain effective (actual) bandwidth:

Effective Bandwidth = .3 X .82 = 25%

The effective bandwidth of this Link is only 25%.

A.4.2 Two Outstanding Requests, Small Packet

Figure 28: Two outstanding requests, small packet

Tx1 and Tx2 represent Read Requests of 32 DW. By increasing the number of outstanding requests to two and
leaving all other variables the same, effective bandwidth is:

• Actual Link Usage = 6 / (6 + 4) = 60%

• Effective Bandwidth = .6 X .82 = 49%

time (Tx)time (Tx)

time (Rx)
Rx1 Rx1

Time necessary for Rx1 to pass a point

Idle time

Latency

Tx1Tx1 Tx1

time (Tx)

time (Rx)

Tx1

Rx1

Tx1 Tx1

Rx1

Tx2 Tx2 Tx2

Rx2 Rx1 Rx2

EZDMA IP Reference Manual

48

A.4.3 Four Outstanding Requests, Small Packet

Figure 29: Four outstanding requests, small packet

Tx1, Tx2, Tx3, and Tx4 represent Read Requests of 32 DW. Outstanding requests are set to four and the Actual
Link Usage = 100%.

Actual Link Usage = 10 / (10 + 0) = 100%

Effective Bandwidth = 1 X .82 = 82%

This Link is performing at Maximum Effective Bandwidth. Increasing the number of outstanding requests will not
improve system performance and will needlessly increase the size of the Core.

A.4.4 Two Outstanding Requests, Large Packet

Figure 30: Two outstanding requests, large packet

Tx1 and Tx2 represent Read Requests of 32 DW. There are only 2 outstanding requests, but increasing the
Maximum Packet Size (Max_Payload_Size) enables Maximum Effective Bandwidth.

Actual Link Usage = 10 / (10 + 0) = 100%

Effective Bandwidth = 1 X .82 = 82%

time (Tx)

time (Rx)

Tx1

Rx1

Tx1Tx2 Tx2

Rx2 Rx3 Rx4

Tx1 Tx1 Tx2Tx3 Tx4

Rx1 Rx1 Rx2 Rx3

Tx3Tx4

time (Tx)

time (Rx)

Tx1 Tx1Tx2 Tx2

Rx1 Rx1 Rx1Rx2Rx2

Tx1 Tx2

49

EZDMA IP Reference Manual

A.4.5 High Latency System

Figure 31: High latency system

Tx1, Tx2, Tx3, and Tx4 represent Read Requests of 32 DW. The time it takes for a Request to be sent and for the
component to receive the corresponding Completion TLP is relatively large, 22 in this case.

Actual Link Usage = 22 / (22 + 2) = 92%

Effective Bandwidth = .92 X .82 = 75%

Even with a high number of outstanding requests and large packets (Max_Payload_Size), this Link will never
reach its Maximum Effective Bandwidth because of high global latency.

time (Tx)

time (Rx)

Tx2Tx3Tx4Tx1 Tx1 Tx2

Rx1 Rx2 Rx3

time (Tx)

time (Rx)

Tx3

Rx4Rx3Rx3 Rx4
Rx1

Rx1

Tx1 Tx2Tx3 Tx4

Rx1

Note the gap

5 10 15 20 25 30

35 40 45 50 55 60

31

31

EZDMA IP Reference Manual

50

Appendix B: Register content of TLPs

The following tables describe register content for all types of descriptors (TLPs):

• Register content for TLPs without a data payload

• Register content for TLPs with a data payload

This Appendix is provided in order to help you debug potential problems.

For more information about the register content of TLPs, see the PCI Express™ Base Specification Revision 2.0.

B.1 Register Content for a TLP without a Data Payload

Table 18: Memory Read Request 32-bit addressing descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 0 0 TC 0 0 0 0 T
D

E
P

Attr 0 0 Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[31:2] 0 0

Byte
12

Reserved

Table 19: Memory Read Request-Locked 32-bit addressing descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0 1 0 TC 0 0 0 0 T
D

E
P

Attr 0 0 Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[31:2] 0 0

Byte
12

Reserved

Table 20: Memory Read Request 64-bit addressing descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 0 0 0 0 0 0 TC 0 0 0 0 T
D

E
P

Attr 0 0 Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte
12

Address[31:2] 0 0

51

EZDMA IP Reference Manual

Table 21: Memory Read Request-Locked 64-bit addressing descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 0 0 0 0 1 0 TC 0 0 0 0 T E
P

Attr 0 0 Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte
12

Address[31:2] 0 0

Table 22: I/O Read Request descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 T
D

E
P

0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Address[31:2] 0 0

Byte
12

R

Table 23: Type 0 Configuration Read Request descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 T
D

E
P

0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device Nb. Func 0 0 0 0 Ext. Reg. Register Nb. 0 0

Byte
12

R

Table 24: Type 1 Configuration Read Request descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 T
D

E
P

0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device Nb. Func 0 0 0 0 Ext. Reg. Register Nb. 0 0

Byte
12

R

EZDMA IP Reference Manual

52

B.2 Register Content for a TLP with a Data Payload

Table 25: Message (without data) descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 1 1 0 r

2

r

1

r

0

0 TC 0 0 0 0 T
D

E
P

0 0 0 0 0 0 0 0 0 0 0 0 0 0

Byte 4 Requester ID Tag Message Code

Byte 8 Vendor defined or all zeros

Byte
12

Vendor defined or all zeros

Table 26: Completion (without data) descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 0 1 0 0 TC 0 0 0 0 T
D

E
P

Attr 0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte
12

R

Table 27: Completion Locked (without data) descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 0 1 1 0 TC 0 0 0 0 T
D

E
P

Attr 0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte
12

R

Table 28: Memory Write Request 32-bit addressing descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 0 0 0 TC 0 0 0 0 T
D

E
P

Attr 0 0 Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[31:2] 0 0

Byte
12

R

53

EZDMA IP Reference Manual

Table 29: Memory Write Request 64-bit addressing descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 1 0 0 0 0 0 0 TC 0 0 0 0 T
D

E
P

Attr 0 0 Length

Byte 4 Requester ID Tag Last BE First BE

Byte 8 Address[63:32]

Byte
12

Address[31:2] 0 0

Table 30: I/O Write Request descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 T
D

E
P

0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Address[31:2] 0 0

Byte
12

R

Table 31: Type 0 Configuration Write Request descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 T
D

E
P

0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device Nb. Func 0 0 0 0 Ext. Reg. Register Nb. 0 0

Byte
12

R

Table 32: Type 1 Configuration Write Request descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 T
D

E
P

0 0 0 0 0 0 0 0 0 0 0 0 0 1

Byte 4 Requester ID Tag 0 0 0 0 First BE

Byte 8 Bus Number Device Nb. Func 0 0 0 0 Ext. Reg. Register Nb. 0 0

Byte
12

R

EZDMA IP Reference Manual

54

Table 33: Completion (with data) descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 0 0 TC 0 0 0 0 T
D

E
P

Attr 0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte
12

R

Table 34: Completion Locked (with data) descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 0 0 1 0 1 1 0 TC 0 0 0 0 T
D

E
P

Attr 0 0 Length

Byte 4 Completer ID Status B Byte Count

Byte 8 Requester ID Tag 0 Lower Address

Byte
12

Table 35: Message (with data) descriptor format

+0 +1 +2 +3

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 0 1 1 1 0 r

2

r

1

r

0

0 TC 0 0 0 0 T
D

E
P

0 0 0 0 Length

Byte 4 Requester ID Tag Message Code

Byte 8 Vendor defined or all zeros for Slot Power Limit

Byte
12

Vendor defined or all zeros for Slots Power Limit

55

EZDMA IP Reference Manual

Appendix C: PCI Express Fundamentals

This Appendix describes some of the basic features of the PCI Express protocol for users that are not familiar with
the protocol.

For a full description, see the PCI Express Specifications.

C.1 About PCI Express

PCI Express is a third generation, high-bandwidth, low voltage, differential serial interconnect technology that
maintains compatibility with existing PCI infrastructures. It is derived from the PCI and PCI-X protocols, however
PCI Express represents an architectural leap beyond its sister technologies rather than simply an extension of the
existing norms.

PCI Express includes the following features:

• Increased bandwidth: high-speed links can currently transfer up to 2.5 gigabits per second, and future
implementations of PCI Express will support as much as 10 gigabits per second

• Isochronous transactions: With the introduction of Virtual Channels (VCs) and Traffic Classes (TCs), the
designer can prioritize traffic flow

• Serial point-to-point interface

• High bandwidth per pin

• Scalability

• Support for differentiated services, that is, different Qualities of Service (QoS)

• Power Management and budgeting

• Hot-Plug and Hot-Swap support

• Ability to maintain Link-level and end-to-end data integrity

• Advanced Error handling

C.2 PCI Express Lanes and Links

A PCI Express lane is the fundamental connection between two devices. Each lane is defined by a pair of
differential transmit signals and a pair of differential receive signals, as illustrated below.

Figure 32: A PCI Express Lane

With a PCI Express lane, there is no arbitration for a shared Bus, as the Transmitting device is always directly
connected with a Receiving device and each device is always both a transmitting device and a receiving device.

Device A Device B

Tx
T+
T-

T-

T+

Rx

R+

R-

R-

R+

RxTx

Lane

EZDMA IP Reference Manual

56

A PCI Express Link is defined as the connection between two devices and includes one or more lanes. The PCI
Express Specifications define x1, x2, x4, x8, x12, x16, and x32 lanes for serial Links. The following figure
illustrates a x4 (four-lane) Link.

Figure 33: PCI Express x4 Link

PCI Express maintains compatibility with PCI software by simulating a PCI bus across each Link.

Device BDevice A

Lane
Link

57

EZDMA IP Reference Manual

C.3 The PCI Express Fabric

The following figure illustrates a typical PCI Express fabric (or topology).

Figure 34: A Typical PCI Express Fabric

C.3.1 Root Complex

In the example above, the Root Complex is composed of one Root Complex Register Block (RCRB) associated
with the sink unit (entry to the PCI Express fabric hierarchy) and two Rootports. The sink unit and the two
Rootports constitute a virtual PCI bus segment that has Bus Number 0. This means that the Root Complex
implements a virtual embedded switch between the Rootports and transfers are allowed directly between them
(this is an optional feature of the Root Complex).

The PCI configuration software programs each Rootport as a Type 1 Configuration space. In the example, the first
Rootport is Bus 0, Device 1 and the second Bus 0, Device 2.

The sink unit represents the start of the PCI Express fabric and is equivalent to a virtual PCI host port that can
generate all transaction types (Memory, I/O, Completion, and Message) and also relay Request and Completion
transactions used to access the central memory.

Rootport Device 1 is connected to an Endpoint through virtual PCI Bus Segment 1 and has the following Type 1
Configuration Space parameters:

• Primary Bus Number 0

• Secondary Bus Number 1

• Subordinate Bus Number 1 (only one bus number is located downstream of the Rootport)

Rootport device 2 is connected to a PCI Express Switch and has the following configuration parameters:

• Primary Bus Number 0

• Secondary Bus Number 2

• Subordinate Bus Number 7 (bus segments 2 through 7 are located behind the Rootport)

The Endpoint component located behind Rootport Device 1 is a low latency Endpoint, for example, a graphic

CPU

Root Complex

Memory
RCRB

Virtual PCI Bus 0

Rootport

Virtual PCI Bus 1 Virtual PCI Bus 2

Virtual PCI Bus 3 Virtual PCI Bus 4

Virtual PCI Bus 5

PCI/PCI-X

B
ri

d
g

e
Rootport

sink

S
w

P
SwP

SwP

S
w

P

Switch

End-
point

Real PCI Bus 7

Virtual
PCI Bus 6

Endpoint

End-
point

Switch Downstream Port
Type 1 Conf Space
Dev3 PRB3 SEB6 SUB7

PCI Express / PCI-X Bridge
Type 1 Conf Space
Dev0 PRB6 SEB7 SUB7

PCI or PCI-X Board
Type 0 Conf Space
DevX Bus 7

Endpoint (low latency)
Type 0 Conf Space
Dev0 Bus1

Rootport (Downstream)
Type 1 Conf Space
Dev1 PRB0 SEB1 SUB1

Root Complex Register Block
Dev0 Bus0

Endpoint (medium latency)
Type 0 Conf Space
Dev0 Bus5

Switch Downstream Port
Type 1 Conf Space
Dev2 PRB3 SEB5 SUB5

Switch Downstream Port
Type 1 Conf Space
Dev1 PRB3 SEB4 SUB4

Endpoint (medium latency)
Type 0 Conf Space
Dev0 Bus4 func0

Switch Upstream Port
Type 1 Conf Space
Dev0 PRB2 SEB3 SUB7

Rootport
Type 1 Conf Space
Dev2 PRB0 SEB2 SUB7

Endpoint (medium latency)
Type 0 Conf Space
Dev0 Bus4 func1

func1

 func0

EZDMA IP Reference Manual

58

board where latency is critical for optimal performance. An Endpoint device number is always 0 and its Bus
number is programmed by the PCI configuration software (Bus 1, in this example).

C.3.2 Endpoint

All PCI Express Endpoints implement a Type 0 Configuration Space and have Device number 0. In the example
(Figure 34), the two Endpoints located behind the Switch have Bus Numbers 4 and 5. The Endpoint located
behind Bus 4 implements two different functions (func0 and func1). The Endpoints located behind Bus Numbers 4
and 5 are considered medium latency components due to the fact that they are behind a Switch component and
not directly connected to the Root Complex. In general, a PCI Express Endpoint component is considered to have
high latency if two or more Switch components lie between it and the Root Complex.

The PCI Endpoint components located behind the Bridge are also implemented as Type 0 Configuration space
components and respond only to Type 0 Configuration access requests (if their PCI_IDSEL pin is asserted).

C.3.3 Switch

In the example (Figure 34), the PCI Express Switch component implements four PCI Express ports, one upstream
and three downstream. Each port is equivalent to a PCI Bridge and implements a Type 1 Configuration space.
Internal routing between ports is accomplished by a virtual PCI Bus segment.

The following table describes the configuration of each Switch port in Figure 34.

C.3.4 Bridge

The PCI Express / PCI Bridge component implements a common Type 1 Configuration space for both sides of the
bridge: the PCI Express Core and the PCI component Core. The mechanism to handle transactions between the
two is described in the PCI Express Base Specification Revision 2.0 (as well as Revisions 1.1 and 1.0a). In
Figure 34, the Bridge has the following parameters:

• Device number 0 (mandatory)

• Primary Bus Number 6 (PCI Express Core Link)

• Secondary Bus Number 7 (PCI bus)

• Subordinate Bus Number 7 (no other PCI / PCIe Bridges are located on the PCI bus)

Table 36: Configuration of Switch ports

Device Number 0 (upstream) 1 (downstream) 2 (downstream) 3 (downstream)

Primary Bus
Number

2 3 3 3

Secondary Bus
Number

3 4 5 6

Subordinate Bus
Number

7 4 5 7

59

EZDMA IP Reference Manual

C.4 Types of Transactions

The following table summarizes the different types of transactions possible in the PCI Express fabric:

A Completion Transaction is a distinct package generated in the PCI Express fabric in response to a Read or Write
Request. Like Configuration Requests, Completion transactions are routed by Transaction ID.

Table 37: PCI Express transaction types and characteristics

Transaction
Type

How request is
handled

Routing
method

Notes

Memory Write Posted (no
Completion is
required)

Address Memory Write Requests use Posted TLPs and
can have data payloads of up to 4 Kbytes
(depending on the Max_Payload_Size
parameter of the Configuration Space).

Memory Write Requests can use 32-bit address
formatting or 64-bit address formatting.

Memory Read Non-Posted
(Completion is
required)

Address Memory Read Requests use Non-Posted TLPs
and have no payload. A dedicated register of
the configuration space defines the maximum
Read Request size. Please see the following
section for details concerning Completion
transactions. Memory Read Requests can use
32-bit address formatting or 64-bit address
formatting.

I/O Write Non-Posted Address I/O Request transactions use Non-Posted TLPs.
I/O Write Request transactions have a data
payload of 1DW. I/O Requests always require a
Completion packet, whether the request is
returned successful or aborted. Please see the
following section for details concerning
Completion transactions.

I/O Read Non-Posted Address

Configuration
Write

Non-Posted ID Configuration Requests use Non-Posted TLPs.
Configuration Write requests have data
payloads of 1 DW. Each Configuration request
requires a Completion regardless of whether the
request was accepted. Please see the following
section for details concerning Completion
transactions.

Configuration
Read

Non-Posted ID

Message Posted Address In addition to the three PCI transactions
(Memory, I/O, and Configuration), PCI Express
introduces a fourth type of transaction for
Messages. Message transactions support
power management requests and emulate PCI
legacy virtual pins (such as INT, PME, PERR,
and SERR).

EZDMA IP Reference Manual

60

Completion transactions vary in nature depending on the reason for their generation. The following table describes
differences in Completion transactions.

C.5 Routing Rules

The PCI Express fabric uses the following routing rules:

• All Memory and I/O transactions are routed by address (BAR decoding for Endpoint Type 0 configuration
spaces, and Memory Mapped I/O for Rootport, Switch, and Bridge Type 1 Configuration spaces).

• Configuration, Message, and Completion transactions are routed by the Transaction ID of the destination
component (Bus, Device, and Function number) and comply with Type 1 Configuration Space routing
specifications.

Message transactions are independent of the PCI configuration software and have different types of routing. See
Section C.5.3 for details.

The TLP header includes information about the type of the transaction and whether the transaction is routed by
address or ID.

Table 38: Completion transaction characteristics

Completion transactions
generated in response to a...

have these characteristics

Memory Request Completion transactions are generated for Memory Read Requests but not Memory Write
requests, since no completion is required for the latter.

Completions can have data payloads of up to 4 Kbytes, depending on the Maximum
Payload Size. Note that large Read Request transactions (transactions of 4 Kbytes, for
example) might be divided into several smaller Completion Packets (64, 128, or 256 bytes
on a 64 or 128 address boundary) in order to reduce overall latency and to optimize data
flow within each Switch. Completion transactions may only be divided if they have an end
address corresponding to the Read Completion Boundary (RCB) parameter, which is 64 or
128 bytes for Endpoints, Root Complexes, and Bridges, and 64 bytes for Switches.

Note that the Core does not check for violations of the Read Completion Boundary (RCB).

I/O Request Completion transactions are generated for both Read and Write I/O requests.

Completion packets generated in response to I/O Write requests have no data payload,
whereas a completion packet in response to an I/O Read request has a data payload of 1
DW. I/O Requests always require a Completion transaction regardless of return status
(accepted, successful, unsupported, aborted, or retry).

Configuration Request Completion transactions are generated for both Read and Write Configuration requests.

Completion packets have data payloads of 1 DW if the request is accepted. Configuration
Requests always require a Completion transaction regardless of return status (accepted,
successful, unsupported, aborted, or retry).

61

EZDMA IP Reference Manual

C.5.1 Routing by Address

Transactions that are routed by address compare the destination address (included in the TLP header) with the
registers of the component.

C.5.2 Routing by ID

Regardless of the type of PCI Express component, when a Type 1 Configuration Space port receives a TLP on its
Primary Bus, the following rules apply:

• If the selected Bus Number is equal to its Secondary Bus number, the Type 1 Configuration request is
transformed into a Type 0 Configuration request according to the standard PCI rules.

• In all other cases, the Type 1 Configuration request remains a Type 1 Configuration request and is
transferred to the Secondary Bus (internal or external).

• If the selected Bus Number does not fall between the Secondary Bus number and the Subordinate Bus
number, the transaction is discarded.

C.5.3 Implicit Routing

Messages do not use Address or ID routing, but rely on other mechanisms referred to as “implicit” because the
destination is implied by the routing type (see section 2.2.8 of the PCI Express Base Specification Revision 2.0,1.1
or 1.0a for more information). Implicit routing depends upon the inherent knowledge a PCI Express
component has relating to upstream and downstream transmissions within the fabric.

“Implicit” Routing types include the following:

• Routed to Root Complex

• Broadcast from Root Complex

• Local (Terminate at Receiver)

• Gathered and routed to Root Complex

• reserved (Terminate at Receiver)

Table 39: Routing by Address Rules

Component Type Routing

Type 0 Components
(Endpoint)

If the address of the transmitted TLP lies within one of the component’s
implemented Base Address Registers (BARs), the component will accept
the TLP.

If the address of the TLP does not lie within the component’s BARs, the TLP
is rejected and an error is generated.

Type 1 Components
(Rootport, Switch, or Bridge)

If a device receives a request on its Primary Bus and the destination
address is located within one of the defined address windows (as defined
by its registers), the request is forwarded to the Secondary Bus.

If a device receives a request on its Secondary Bus and the destination
address is located outside of the defined address window, the request is
forwarded to the Primary Bus.

EZDMA IP Reference Manual

62

C.5.4 Routing Examples

The following section outlines two hypothetical transactions that correspond to Figure 34.

C.5.4.1 Configuration Write Transaction

Configuration transactions use ID routing (routing based on the Bus, Device, and Function numbers of the
destination component).

C.5.4.2 Memory Read Transaction

Steps 1-6 of the following example describe a Memory Read request, which uses address routing (routing based
on either a 64-bit format associated with 4 DW headers or a 32-bit format associated with 3 DW headers). For this
example, it is assumed that address windows are correctly defined for each Type 1 Configuration Space
component and that the Completer Endpoint Base Address Register (BAR) is correctly defined.

Steps 7-14 describe routing of the Completion transaction generated in response to the Memory Read request. As
in the first example (Configuration transaction), Completion transactions use ID routing (routing based on the Bus,

Table 40: Configuration Write transaction steps

Step Component ID Description

1 Sink Unit /
CPU

Dev0 Bus0 The CPU instructs the sink unit to generate a
Configuration Write transaction directed to Bus
Number 3, Device 2.

Figure 35: Tracing a Write
Transaction through the

fabric

2 Rootport Dev2 PRB0
SEB2 SUB7

The Rootport receives the transaction and
determines that the destination Bus (3) is located
within its Bus Address window (the range defined by
its Secondary Bus number and Subordinate Bus
number, in this case 2-7). It accepts the transaction
in order to forward it to its Secondary Bus. The target
Bus (3) is not equal to the Secondary Bus (2), and
the transaction remains a Configuration Type 1
transaction.

3 Switch
Upstream Port

Dev0 PRB2
SEB3 SUB7

The Switch’s Upstream Port receives the transaction
and determines that the destination Bus (3) is
located within its Bus Address window and accepts
the transaction in order to forward it to its Secondary
Bus (the Switch’s internal virtual PCI bus). The target
Bus (3) is equal to the Secondary Bus (3), and the
Type 1 Configuration transaction is transformed into
a Type 0 Configuration transaction.

4 Switch
Downstream
Port

Dev2 PRB3
SEB5 SUB5

Each downstream port in the Switch receives the Type 0 Configuration transaction
on virtual Bus 3 and decodes the Device number (2). Port Device 2 recognizes itself
as the Completer, accepts the transaction, and generates a Completion TLP using a
Transaction ID (Bus 0, Device 0).

5 Switch
Upstream Port

Dev0 PRB2
SEB3 SUB7

The Completion TLP is accepted by the Secondary Bus of the Switch’s upstream
port, which determines that the target Bus Number (0) does not lie within its Bus
Address window, and the transaction is forwarded to its Primary Bus.

6 Rootport Dev2 PRB0
SEB2 SUB7

Likewise, the Rootport forwards the transaction back to Virtual Bus 0.

7 Sink Unit /
CPU

Dev0 Bus0 Finally, the sink unit accepts the packet and passes it back to the CPU.

1 / 7

2 / 6

4

3 / 5

63

EZDMA IP Reference Manual

Device, and Function numbers of the destination component).

C.6 Flow Control

C.6.1 Traffic Classes (TCs)

TCs allow for differentiated services, permitting you to prioritize the flow of certain data through the fabric. A Link
must implement at least one TC (TC0) and can implement up to eight TCs, depending on your design.

Table 41: Memory Read transaction steps

Step Component ID Description

1 Endpoint Dev0 Bus1 The Endpoint component located behind Rootport
Device 1 generates a Memory Read request directed
to the Endpoint located behind the Switch’s Port
device 2.

Figure 36: Tracing a Read
Transaction through the

fabric

2 Rootport Dev1 PRB0
SEB1 SUB2

The Secondary Bus of the Rootport (Device 1)
receives the transactions, determines that the
address lies outside of its address window, and
forwards the transaction through its Primary Bus to
the Virtual PCI Bus 0.

3 Rootport Dev2 PRB0
SEB2 SUB7

The Primary Bus of the Rootport (Device 2)
determines that the destination address lies within its
prefetchable address window and forwards the
transactions through its Secondary Bus to the Switch.

4 Switch
Upstream Port

Dev0 PRB2
SEB3 SUB7

The Primary Bus of the upstream port of the Switch
determines that the destination address lies within its
address window and forwards the transactions
through its Secondary Bus to the virtual PCI Bus 3.

5 Switch
Downstream
Port

Dev2 PRB3
SEB5 SUB5

The Primary Bus of downstream port Device 2 of the Switch determines that the
destination address lies within its address window and forwards the transactions
through its Secondary Bus to the virtual PCI Bus 5.

6 Endpoint Dev0 PRB5 The Endpoint (the Completer, in this example) receives the transaction and
determines that the address corresponds to one of its BARs and accepts the
request. The Endpoint responds to the request and generates one or more
Completion transactions to send data back to the requester.

Steps 7-14 describe routing of the Completion transaction generated in response to the Memory Read request.

7 Switch
Downstream
Port

Dev2 PRB3
SEB5 SUB5

Completion transactions use ID routing, and in this example target the requesting
component (Endpoint Bus1 Dev0). The Secondary Bus of the downstream port
Device 2 determines that the destination Bus (1) lies outside of its Bus window (5-5)
and forwards the transaction through its Primary Bus to the virtual PCI Bus 3.

8 Switch
Upstream Port

Dev0 PRB2
SEB3 SUB7

The Secondary Bus of the upstream port determines that the destination Bus (1) lies
outside of its Bus window (3-7) and forwards the transaction through its Primary Bus
to the Rootport.

9 Rootport Dev2 PRB0
SEB2 SUB7

The Secondary Bus of the Rootport determines that the destination Bus (1) lies
outside of its Bus window (2-7) and forwards the transaction through its Primary Bus
to the virtual PCI bus 0.

10 Rootport Dev1 PRB0
SEB1 SUB2

The Primary Bus of the Rootport determines that the destination Bus (1) lies within
its Bus window (1-1) and forwards the transaction through its Secondary Bus to the
Endpoint.

11 Endpoint Dev0 Bus1 The Endpoint recognizes itself as the destination component, verifies the tag of the
transaction, and processes the transmitted information.

1 / 11

2 / 10 3 / 9

4 / 8

5 / 7

6

EZDMA IP Reference Manual

64

C.6.2 Virtual Channels (VCs)

VCs allow for multiple independent paths of data flow over a single Link. A Link must implement at least one VC
(VC0) and can implement up to eight VCs, according to your design.

The number of VCs initialized across a Link has no relation to the number of lanes implemented by the Link. For
example, a x1 component could have eight VCs, and a x4 component could have one VC.

If two components on either side of a Link implement a different number of VCs, only the number of VCs the two
components have in common are initialized (see Figure 38).

C.6.3 TCs and VCs

The concept of TCs associated with VCs facilitate data flow in the fabric, allowing you to determine what
percentage of a particular Link should be devoted to a particular kind of data transfer. This, in turn, helps to avoid
congestion and permits isochronous traffic.

The following figure illustrates the function of Virtual Channels and Traffic Classes in the fabric.

Figure 37: Flow Control through Virtual Channels (VCs) and Traffic Classes (TCs)

Note that the figure above does not specify how many VCs are implemented per component. Consider Link 2,
enlarged in the following figure:

Figure 38: Flow Control through a single Link

The Endpoint component might also have VC1 and VC2 implemented, but the Link only initializes the number of
common VCs shared across a Link.

C.6.4 Receive Buffer

Each component commits a certain number of resources (determined by the user) to the Receive buffer. The
Receive buffer is located in the Transaction Layer and accepts incoming TLPs from the Link and then sends them
to the Application Layer for processing. Receive buffer resources are either implemented per VC or per Link. The
following figure enlarges VC3 from Figure 37 and illustrates the various buffers that, taken together, make up the

TC[0:1]VC0

VC1

VC2

VC3

TC[2:4]

TC[5:6]

TC7

Root Complex

TC[0:1]

TC[2:4]

TC[5:6]

TC7

Multiplexing
Mapping

TC[0:1]

TC7

TC[0:1]

TC[2:4]

TC[5:6]

TC7

Switch

VC0

VC1

VC2

VC3

TC[0:1]

TC7

VC0

VC1

VC2

VC3

VC0

VC3

TC[0:1]

TC[2:4]

TC[5:6]

TC7

Endpoint

Endpoint

Link 1

Link 2

Link 3

TC[0:1]

TC7

Switch

TC[0:1]

TC7

VC0

VC3

Endpoint Link 2

VC1
VC2

65

EZDMA IP Reference Manual

Receive buffer.

Figure 39: Receive buffers for a Virtual Channel

The Receive buffer stores TLPs based on the type of a transaction, not the TC of a transaction. Types of
transactions include Posted transactions, Non-Posted transactions, and Completion transactions.

A transaction always has a header but does not necessarily have data. The Receive buffer accounts for this
distinction, maintaining separate resources for the header and data of each type of transaction. To summarize,
distinct buffer resources are maintained per initialized VC for each of the following elements:

• Posted transactions, header (PH)

• Posted transactions, data (PD)

• Non-Posted transactions, header (NPH)

• Non-Posted transactions, data (NPD)

• Completion transactions, header (CPLH)

• Completion transactions, data (CPLD)

Note that the Receive buffer levels on one side of a Link have no relation to the Receive buffer levels on the other
side of a Link.

The size of the Receive buffer has a significant impact on system performance. The smallest possible size is the
Maximum Payload Size (Max_Payload_Size), but the Receive buffer is typically set to at least four times the
Maximum Payload Size for the following reasons:

• so that it can store a maximum-sized TLP in the buffer and forward a second TLP to the Application Layer

• so that it can handle multiple Completions of minimum payload size. For example, a component set to
handle 16 outstanding requests, each of which might have four corresponding Completion packets, would
need a minimum Receive buffer size of 16 X 4 = 64 DW.

C.6.5 Flow Control Credits

A component advertises Buffer space availability with Flow Control credits. FC credits are maintained for each of
the six Receive buffers and are transferred using FC Packets, a type of Data Link Layer Packet (DLLP).

The transmitting side of a Link will not send a transaction if the receiving side hasn’t advertised enough FC credits
(header and data credits) for that particular type of transaction.

The following table offers an example of advertised FC credits for an Endpoint component.

Table 42: Example of an Endpoint’s advertised credits at and after
Link initialization and the effect on Flow Control

Type of FC
credit

Advertised Credits at
Link initialization

Advertised Credits at
Link initialization + n

clock cycles
Transmission permitted...

Posted Header 16 0 No: Sufficient credits for both
header and data must be
advertised before a packet is
transmitted.

Posted Data 128 96

Link 2, VC3 (from the example above)

Rx

Tx Rx

Tx

PH PD NPH NPD CPLH CPLDPH PD NPH NPD CPLH CPLD

Endpoint Switch

Endpoint Receive buffer Switch Receive buffer

EZDMA IP Reference Manual

66

The unit of a single FC credit differs between header and data:

• Header (maximum-sized header + digest1)

• 4 DWs for Completion transactions

• 5 DWs for Request transactions

• Data: 4 DWs (16-bytes aligned)

FC Credits are initialized for each VC with maximum credits and then updated periodically as TLPs are extracted
from the Receive buffer of the receiving side of a Link. Note that one DLLP can update FC Credits associated with
one or more TLPs.

C.6.6 Deadlock Avoidance

As in all Switch and Bridge architectures, deadlock occurs when a component can only proceed when one of its
internal resources is freed. PCI Express prevents deadlock with two complementary mechanisms:

• Reordering of TLPs: Component resources are freed when Posted Write requests are executed or when a
component receives the final Completion TLP in response to a Read request. More specifically, Non-Posted
requests must give priority to Posted and Completion transactions.

• Infinite credits: Endpoints and Rootports must advertise infinite Completion credits in order to prevent
deadlock. To do so, they are not allowed to initiate Read Request transactions if they do not have sufficient
Completion buffer space in order to store the maximum number of Completion transactions that might be
generated in response to the Read Request.

Note: Other reordering rules govern interactions between Posted requests, Non-Posted requests, and Completion
transactions depending on the Traffic Class (TC) and on the “relaxed ordering” bit of the TLP. These additional
reordering rules have no effect on deadlock avoidance but can facilitate the flow of global traffic within a fabric.

C.7 Error Handling

C.7.1 Error Recovery

The Data Link Layer handles error recovery. It is based on 32-bit Cyclic Redundant Check (CRC) error detection,
TLP sequence number, Replay buffer, and ACK/NAK DLLP exchange. A typical error check might transpire as
follows:

• Step 1 Transmitter: On the transmit side of the Link, the Data Link Layer adds a sequence number to the
TLP and generates a 32-bit CRC in order to protect the complete packet. The transmitter also stores the
sent packet in its Replay buffer.

Non-Posted
Header

16 16 Yes

Non-Posted
Data

16 16

Completion
Header

infinite infinite Yes: Please see the following
section, Deadlock avoidance, for
an explanation of infinite credits.

Completion data infinite infinite

1. The TLP digest is the end-to-end CRC located just before the LCRC at the end of the TLP. It is signaled with the TD bit set
to 1 in the header.

Table 42: Example of an Endpoint’s advertised credits at and after
Link initialization and the effect on Flow Control

Type of FC
credit

Advertised Credits at
Link initialization

Advertised Credits at
Link initialization + n

clock cycles
Transmission permitted...

67

EZDMA IP Reference Manual

• Step 2 Receiver: On the receive side of the Link, the Data Link Layer verifies the CRC and the sequence
number and generates an Acknowledgement / Negative Acknowledgement (ACK/NAK) DLLP in order to
report to the transmitter if the packet has been correctly received.

• Step 3 Transmitter: If the received ACK/NAK DLLP is negative (NAK), the transmitter must end its current
transmission and re-send the TLP that caused the NAK response. If, on a second try, the packet is
successfully transmitted (ACK DLLP), the TLP is purged from the Replay buffer. If the transmitter has not
received an ACK reply after three retries, the Link is directed to recovery, that is retraining of the Link.

Note: DLLPs are also protected by a 16-bit CRC, but no acknowledge or error recovery mechanism exists for this
check. Instead, DLLPs are periodically generated in order to ensure that the proper information is transmitted.

C.7.2 End-to-End Cyclic Redundancy Check (ECRC)

PCI Express maintains data integrity across two Endpoints of the fabric with the TLP digest (also called ECRC).
The TD bit (TLP Digest bit) of the TLP header indicates whether the TLP includes a TLP digest.

Switch devices change packet sequence numbers between ingress and egress ports and can introduce errors as
they recalculate the CRC. The TLP digest is an optional feature used in high reliability systems to check for
introduced errors.

C.7.3 Replay buffer

The Replay buffer, located in the Data Link Layer and common to all VCs, stores a copy of a transmitted TLP until
the transmitted packet is acknowledged by the receiving side of the Link. Each stored TLP includes the Header, an
optional data payload (of which the maximum size is determined by the Maximum Payload Size parameter), an
optional ECRC, the sequence number, and the LCRC field.

The receiving side of the Link acknowledges reception of a TLP with transmission to the transmitting side of an
ACK DLLP. In the case of CRC error on the receiving side, a NAK DLLP is sent to the transmitting side, which
retrieves the TLP from the Replay buffer and sends it again.

The user is responsible for setting the size of the Replay buffer, which should be of a sufficient size so that TLP
transmission is not delayed because of a full buffer. Replay buffer resources are only freed upon reception of an
ACK DLLP, which means that Link latency (associated with DLLP transmission and/or implementation of the
Physical Layer) affects the ideal size of the Replay buffer. In general, the Replay buffer size should be at least
twice the maximum TLP size.

C.7.4 Completion Timeout

Endpoint and Rootport components use a timeout mechanism (which is design-specific) for failed Read Request
transactions in order to report errors to the Rootport (using Error Messages) and to free Completion resources.

	Documentation Change History
	Table of Contents
	List of Tables
	List of Figures
	Preface
	About this Document
	Additional Reading
	PLDA Publications
	Other Publications

	Feedback and Contact Information
	Feedback about this Document

	Chapter 1 EZDMA IP Core Features
	Chapter 2 EZDMA IP Architecture
	2.1 Architecture of the Master Module DMA Interface
	2.1.1 Request & Completion Control
	2.1.2 Master Request Module
	2.1.3 Behavior of Master Completion Logic
	2.1.4 Completion Resources

	2.2 Architecture of the Slave Module
	2.3 Configuration Space

	Chapter 3 Integrating the EZDMA IP Core into your Design
	3.1 EZ Interface
	3.2 Clocks and Resets
	3.3 Master Module Interface
	3.3.1 Master Module Signals
	3.3.2 Transaction Examples using Master signals

	3.4 Setting DMA Channel Registers
	3.4.1 Setting DMA Channel Options
	3.4.2 Address/Data Interface
	3.4.3 DMA Channel Control

	3.5 Setting DMA Parameters
	3.5.1 Connecting the DMA Module to the Application Layer
	3.5.2 DMA Commands

	3.6 Implementing Scatter-Gather DMA
	3.6.1 Direct and Scatter-Gather DMA Transfer
	3.6.2 Scatter-Gather Controller

	3.7 Slave Module Interface
	3.7.1 Slave Module Signals
	3.7.2 Transaction Examples using Slave Signals

	3.8 Handling Interrupts
	3.9 Configuration Interface
	3.10 Test Mode
	3.11 Connecting the EZDMA IP to the Altera Hard IP

	Appendix A: PCI Express System Performance
	A.1 Latency
	A.2 Maximum Effective Bandwidth
	A.3 Actual Link Usage
	A.4 System Performance Illustrated
	A.4.1 One Outstanding Request, Small Packet
	A.4.2 Two Outstanding Requests, Small Packet
	A.4.3 Four Outstanding Requests, Small Packet
	A.4.4 Two Outstanding Requests, Large Packet
	A.4.5 High Latency System

	Appendix B: Register content of TLPs
	B.1 Register Content for a TLP without a Data Payload
	B.2 Register Content for a TLP with a Data Payload

	Appendix C: PCI Express Fundamentals
	C.1 About PCI Express
	C.2 PCI Express Lanes and Links
	C.3 The PCI Express Fabric
	C.3.1 Root Complex
	C.3.2 Endpoint
	C.3.3 Switch
	C.3.4 Bridge

	C.4 Types of Transactions
	C.5 Routing Rules
	C.5.1 Routing by Address
	C.5.2 Routing by ID
	C.5.3 Implicit Routing
	C.5.4 Routing Examples

	C.6 Flow Control
	C.6.1 Traffic Classes (TCs)
	C.6.2 Virtual Channels (VCs)
	C.6.3 TCs and VCs
	C.6.4 Receive Buffer
	C.6.5 Flow Control Credits
	C.6.6 Deadlock Avoidance

	C.7 Error Handling
	C.7.1 Error Recovery
	C.7.2 End-to-End Cyclic Redundancy Check (ECRC)
	C.7.3 Replay buffer
	C.7.4 Completion Timeout

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

